Energy and Buildings, Vol.42, No.11, 2231-2240, 2010
Analysis of a combined cooling, heating, and power system model under different operating strategies with input and model data uncertainty
Combined cooling, heating, and power (CCHP) system models have been used by many researchers to compare their performance with conventional systems. However, decisions based on the results of computer simulations need to take into account the uncertainty of these results to get insight into the level of confidence in the predictions. This paper presents an analysis of a CCHP system model under different operating strategies with input and model data uncertainty. However, the uncertainties that underlie the variation in input parameters such as the thermal load, natural gas prices and electricity prices are not readily available. Additionally, engine performance uncertainty can be difficult to characterize because of the nonlinearity of engine efficiency curves. This paper presents practical and novel approaches to estimating the uncertainty in these and other input parameters. A case study using a small office building located in Atlanta, GA, is described to illustrate the importance of the use of uncertainty and sensitivity analysis in CCHP system performance predictions, and how the primary energy consumption, operational cost, and carbon dioxide emissions are affected by the uncertainty associated with the model input parameters. (C) 2010 Elsevier ay. All rights reserved.