Energy Conversion and Management, Vol.51, No.10, 1958-1969, 2010
Impact of two-stage turbocharging architectures on pumping losses of automotive engines based on an analytical model
Present work presents an analytical study of two-stage turbocharging configuration performance. The aim of this work is to understand the influence of different two-stage-architecture parameters to optimize the use of exhaust manifold gases energy and to aid decision making process. An analytical model giving the relationship between global compression ratio and global expansion ratio is developed as a function of basic engine and turbocharging system parameters. Having an analytical solution, the influence of different variables, such as expansion ratio between HP and LP turbine, intercooler efficiency, turbochargers efficiency, cooling fluid temperature and exhaust temperature are studied independently. Engine simulations with proposed analytical model have been performed to analyze the influence of these different parameters on brake thermal efficiency and pumping mean effective pressure. The results obtained show the overall performance of the two-stage system for the whole operative range and characterize the optimum control of the elements for each operative condition. The model was also used to compare single-stage and two-stage architectures performance for the same engine operative conditions. Benefits and limits in terms of breathing capabilities and brake thermal efficiency of each type of system have been presented and analyzed. (C) 2010 Elsevier Ltd. All rights reserved.
Keywords:Automotive;Reciprocating internal combustion engines;Turbochargers;Two-stage turbocharging;Analytical engine modeling