Korean Journal of Chemical Engineering, Vol.28, No.2, 531-538, February, 2011
Statistical optimization of process conditions for photocatalytic degradation of phenol with immobilization of nano TiO2 on perlite granules
E-mail:
Response surface methodology (RSM) using D-optimal design was applied to optimization of photocatalytic degradation of phenol by new composite nano-catalyst (TiO2/Perlite). Effects of seven factors (initial pH, initial phenol concentration, reaction temperature, UV irradiation time, UV light intensity, catalyst calcination temperature, and dosage of TiO2/perlite) on phenol conversion efficiency were studied and optimized by using the statistical software MODDE 8.02. On statistical analysis of the results from the experimental studies, the optimum process conditions were
as follows: initial pH, 10.7; initial phenol concentration, 0.5 mM; reaction temperature, 27 ℃; UV irradiation time, 6.5 h; UV light intensity, 250W; catalyst calcination temperature, 600 ℃; and TiO2/perlite dosage, 6 g/L. Analysis of variance (ANOVA) showed a high coefficient of determination (R2) of 91.8%.
- Vione D, Minero C, Maurino V, Carlotti AE, Picatonotto T, Pelizzetti E, Appl. Catal. B: Environ., 58(1-2), 79 (2005)
- Peiro AM, Ayllon JA, Peral J, Domenech X, Appl. Catal. B: Environ., 30(3-4), 359 (2001)
- Wu C, Liu X, Wei D, Fan J, Wang L, Water Res., 35, 3927 (2001)
- Ding Z, Hu XJ, Lu GQ, Yue PL, Greenfield PF, Langmuir, 16(15), 6216 (2000)
- Eggins B, Byrne JA, Dunlop PM, Davidson A, Top. Issue Glass., 3, 57 (1999)
- Vohra MS, Tanaka K, Environ. Sci. Technol., 35, 411 (2001)
- Vigil E, Zumeta I, Espinosa R, Nunez C, Ayllon JA, Saadoun L, Domenech X and Rodriguez-Clemente R, Surf. Sci. Its Appl., Proc. Lat. Am. Congr., 9th, Eds. Osvaldo De Melo, and Isaac Hernandez- Calderon, 146-155, Singapore, Singapore: World Scientific Publishing Co. Pte. Ltd. (2000)
- Barakat MA, Tseng JM, Huang CP, Appl. Catal. B: Environ., 59(1-2), 99 (2005)
- Koike H, Oki Y, Takeuchi Y, Mater. Res. Soc. Symp. Proc., 549, 141 (1999)
- Hosseini SN, Borghei SM, Vossoughi M, Taghavinia N, Appl. Catal. B: Environ., 74(1-2), 53 (2007)
- Martendal E, Budziak D, Carasek E, J. Chromatogr. A., 1148, 131 (2007)
- Mohan SV, Sirisha K, Rao RS, Sarma PN, Ecotoxicol. Environ. Saf., 68, 252 (2007)
- Myers RH, Montgomery DC, Response surface methodology: Process and product optimization using designed experiments., John Wiley & Sons, New York (2002)
- Chen DW, Ray AK, Appl. Catal. B: Environ., 23(2-3), 143 (1999)
- Walter MV, Ruger M, Ragob C, Steffens GCM, Hollander DA, Paar O, Maier HR, Jahnen-Dechent W, Bosserhoff AK, Erli HJ, Biomaterials., 26, 2813 (2005)
- Erdem TK, Meral C, Tokyay M, Erdogan TY, Cem. Concr.Compos., 29, 13 (2007)
- Daneshvar N, Behnajady MA, Asghar YZ, J. Hazard. Mater., 139(2), 275 (2007)
- Sakthivel S, Neppolian B, Shankar MV, Arabindoo B, Palanichamy M, Murugesan V, Sol. Energy Mater. Sol. Cells., 77, 65 (2003)
- Lizama C, Freer J, Baeza J, Mansilla WD, Catal. Today, 76(2-4), 235 (2002)
-
Hoffmann MR, Martin ST, Choi WY, Bahnemann DW, Chem. Rev., 95(1), 69 (1995)
- Sobana N, Swaminathan M, Sep. Purif. Technol., 56(1), 101 (2007)
- Chatterjee S, Sarkar S, Bhattacharyya SN, J. Photochem. Photobiol. A., 77, 183 (1993)
- Lee JC, Kim MS, Kim CK, Chung CH, Cho SM, Han GY, Yoon KJ, Kim BW, Korean J. Chem. Eng., 20(5), 862 (2003)
- Ohno T, Tokieda K, Higashida S, Matsumura M, Appl. Catal. A: Gen., 244(2), 383 (2003)
- Tanaka Y, Suganuma M, J. Sol-Gel Sci. Technol., 22, 83 (2001)
- Kim DJ, Hahn SH, Oh SH, Kim EJ, Mater. Lett., 57, 355 (2002)
- Mills A, Morris S, J. Photochem. Photobiol. A., 71, 285 (1993)
- Machado NRCF, Santana VS, Catal. Today., 107, 595 (2005)
- Wang CM, Heller A, Gerscher H, J. Am. Chem. Soc., 114, 5230 (1992)
- Alberici RM, Jardim WF, Water Res., 28, 1845 (1994)
- Sclafani A, Palmisano L, Davi E, New. J. Chem., 14, 265 (1990)
- Matthews RW, J. Chem. Soc. Faraday Trans., 80(1), 457 (1984)