Applied Chemistry for Engineering, Vol.22, No.1, 77-80, February, 2011
셀룰로오스 에탄올 생산공정에서 리그닌의 제거특성
Characteristics of Lignin Removal in Cellulosic Ethanol Production Process
E-mail:
초록
본 연구에서는 볏짚, 톱밥, 밤껍질, 땅콩껍질 등 목질계 바이오매스를 이용하여 전처리과정으로 산처리과정을 진행한 후 리그닌 함량변화를 측정하고, 이에 따른 셀룰로오스 에탄올로의 전환특성을 해석하였다. 목질계 바이오매스의 리그닌 함량을 측정한 결과 밤껍질 < 볏짚 < 톱밥 < 땅콩껍질 순으로 리그닌 함량이 높게 측정되었으며, 셀룰로오스 에탄올로의 전환특성은 땅콩껍질 < 톱밥 < 볏짚 < 밤껍질 순으로 우수한 것으로 나타나 산처리과정으로 리그닌의 제거가 필요한 것으로 나타났다. 또한 산처리과정에서 황산의 농도가 증가함에 따라 리그닌 함량이 감소하여 셀룰로오스 에탄올의 수율은 증가하였으며, 최적 황산의 농도는 20 wt%로 선정하였다.
In this study, we measured changes in the lignin content of acidified lignocellulosic biomass such as rice straw, saw dust, chestnut shell and peanut hull and analyzed the conversion property to cellulosic ethanol. It turns out that the lignin content increases in chestnut shell, rice straw, saw dust, peanut hull order and the conversion property to cellulosic ethanol is superior
in the reverse order. Thus, the removal of lignin by acidification is necessary. In addition, as the concentration of sulfuric acid increases, the lignin content decreases and the yield of cellulosic ethanol increased. The optimum concentration of sulfuric acid is 20 wt%.
- Vinzant TB, Ponfick L, Nagle NJ, Ehrman CI, Renolds JB, Himmel ME, Appl. Biochem. Biotechnol., 45, 611 (1994)
- Nguyen QA, Dickow JH, Duff BW, Farmer JD, Glassner DA, Ibsen KN, Ruth MF, Schell DJ, Thompson IB, Tucker MP, Bioresour. Technol., 58(2), 189 (1996)
- Chang TY, Hammerle RH, Japar SM, Salmeen IT, Environ. Sci. Technol., 25, 1190 (1991)
- Palmer FH, Vehicle Performance of Gasoline Containing Oxygenates, Institution of Mechanical Engineers Conference Publication, MEP, London, U.K., 33 (1986)
- Ture S, Uzun D, Ture IE, Energy, 22(1), 17 (1997)
- Harro VB, Curran MA, J. Cleaner Prod., 15, 607 (2007)
- Lee SB, Jung SK, Lee JD, Appl. Chem. Eng., 21(3), 349 (2010)
- He BQ, Wang JX, Hao JM, Yang XG, Xiao JH, Atmos. Environ., 37, 949 (2003)
- WYMAN CE, Bioresour. Technol., 50(1), 3 (1994)
- Cho WS, Chung YH, Kim BK, Suh SJ, Koh WS, Choe SH, J. Plant Biotechnol., 34, 111 (2007)
- Scott CD, Davison BH, Scott TC, Woodward J, Dees C, Rothrock DS, Appl. Biochem. Biotechnol., 45, 641 (1994)
- Kwon JK, Moon HS, Kim JS, Kim SW, Hong SI, Korean J. Biotech. Bioeng., 14, 24 (1999)
- Lee SB, Lee JD, J. of Korea Society of Waste Management., 27, 553 (2010)
- Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osbome E, Paredez A, Raab T, Vorwerk S, Youngs H, Science., 306, 2206 (2004)
- Rose J, Bennett AB, Trends Plant Sci., 4, 176 (1999)
- Saha BC, J. Ind. Microbiol. Biotechnol., 30, 279 (2003)
- Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M, Bioresour. Technol., 96(6), 673 (2005)
- Jacobance SE, Wyman CE, Appl. Biochem. Biotechnol., 84-86, 81 (1999)
- Park SJ, Do YH, Choi JS, Yoon YH, Cha IS, Trans.of the Korean Hydrogen and New Energy Society., 20, 142 (2009)