화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.28, No.3, 744-750, March, 2011
Direct conversion of cellulose into polyols or H2 over Pt/Na(H)-ZSM-5
E-mail:
The direct conversion of cellulose into polyols such as ethylene glycol and propylene glycol was examined over Pt catalysts supported on H-ZSM-5 with different SiO2/Al2O3 molar ratios. The Pt dispersion, determined by CO chemisorption and transmission electron microscopy (TEM), as well as the surface acid concentration measured by the temperature-programmed desorption of ammonia (NH3-TPD), increased with decreasing SiO2/Al2O3 molar ratio for Pt/H-ZSM-5. The total yield of the polyols, i.e., sorbitol, manitol, ethylene glycol and propylene glycol, generally increased with increasing Pt dispersion in Pt/H-ZSM-5. The one-pot aqueous-phase reforming of cellulose into H2 was also examined over the same catalysts. The Pt catalyst supported on H-ZSM-5 with a moderate SiO2/Al2O3 molar ratio and a large external surface area showed the highest H2 production rate. The Pt dispersion, surface acidity, external surface area and surface hydrophilicity appear to affect the catalytic activity for this reaction.
  1. Huber GW, Iborra S, Corma A, Chem. Rev., 106(9), 4044 (2006)
  2. Dhepe PL, Fukuoka A, ChemSusChem., 1, 969 (2008)
  3. Sasaki M, Fang Z, Fukushima Y, Adschiri T, Arai K, Ind. Eng. Chem. Res., 39(8), 2883 (2000)
  4. Deguchi S, Tsujii K, Horikoshi K, Green. Chem., 10, 191 (2008)
  5. Fukuoka A, Dhepe PL, Angew. Chem. Int. Ed., 45, 5161 (2006)
  6. Luo C, Wang S, Liu H, Angew. Chem. Int. Ed., 46, 7636 (2007)
  7. Deng WP, Tan XS, Fang WH, Zhang QH, Wang Y, Catal. Lett., 133(1-2), 167 (2009)
  8. Geboers J, Van de Vyver S, Carpentier K, de Blochouse K, Jacobs P, Sels B, Chem. Commun., 46, 3577 (2010)
  9. Palkovits R, Tajvidi K, Procelewska J, Rinaldi R, Ruppert A, Green Chem., 12, 972 (2010)
  10. Zhu Y, Kong ZN, Stubbs LP, Lin H, Shen S, Anslyn EV, Maguire JA, ChemSusChem., 3, 67 (2010)
  11. Ji N, Zhang T, Zheng M, Wang A, Wang H, Wang X, Chen JG, Angew. Chem. Int. Ed., 47, 8510 (2008)
  12. Ji N, Zhang T, Zheng M, Wang A, Wang H, Wang X, Shu Y, Stottlemyer AL, Chen JG, Catal. Today., 147, 77 (2009)
  13. Zhang Y, Wang A, Zhang T, Chem. Commun., 46, 862 (2010)
  14. Zheng MY, Wang AQ, Ji N, Pang JF, Wang XD, Zhang T, ChemSusChem., 3, 63 (2010)
  15. Ding LN, Wang AQ, Zheng MY, Zhang T, ChemSusChem., 3, 818 (2010)
  16. Davda RR, Shabaker JW, Huber GW, Cortright RD, Dumesic JA, Appl. Catal. B: Environ., 43(1), 13 (2003)
  17. Soares RR, Simonetti DA, Dumesic JA, Angew. Chem. Int. Ed., 45, 3982 (2006)
  18. Huber GW, Cortright RD, Dumesic JA, Angew. Chem. Int. Ed., 43, 1549 (2004)
  19. Davda RR, Dumesic JA, Chem. Commun., 10, 36 (2004)
  20. Wen G, Xu Y, Xu Z, Tian Z, Catal. Commun., 11, 522 (2010)
  21. You SJ, Kim SB, Kim YT, Park ED, Clean Technol., 16(1), 19 (2010)
  22. Lippens BC, Linsen BG, de Boer JH, J. Catal., 3, 32 (1964)
  23. Kim YT, Jung KD, Park ED, Micropor. Mesopor. Mater., 131, 28 (2010)
  24. Treesukol P, Srisuk K, Limtrakul J, Truong TN, J. Phys. Chem. B, 109(24), 11940 (2005)
  25. Sasaki M, Adschiri T, Arai K, AIChE J., 50(1), 192 (2004)
  26. Onda A, Ochi T, Yanagisawa K, Green Chem., 10, 1033 (2008)
  27. Abbadi A, Gotlieb KF, van Bekkum H, Starch., 50, 23 (1998)
  28. Sasaki M, Fang Z, Fukushima Y, Adschiri T, Arai K, Ind. Eng. Chem. Res., 39(8), 2883 (2000)
  29. Davda RR, Shabaker JW, Huber GW, Cortright RD, Dumesic JA, Appl. Catal. B: Environ., 56(1-2), 171 (2005)
  30. Matsumura Y, Sasaki M, Okuda K, Takami S, Ohara S, Umetsu M, Adschiri T, Combust. Sci. Technol., 178(1-3), 509 (2006)
  31. Cortright RD, Davda RR, Dumesic JA, Nature., 418, 964 (2002)