화학공학소재연구정보센터
Industrial & Engineering Chemistry Research, Vol.38, No.10, 3696-3709, 1999
Design guidelines for solid-catalyzed reactive distillation systems
In this paper we discuss design guidelines for solid-catalyzed reactive distillation systems. The guidelines are used to generate initial estimates for column pressure, reactive zone location, catalyst mass, reactant feed location, reactant ratio, reflux ratio, column diameter, number of equilibrium stages, and packed height. They form a part of a methodical design procedure that makes extensive use of both nonequilibrium (rate-based) and equilibrium-stage simulation models. Important choices prior to design include selection of reliable thermodynamic and reaction kinetic models. We tested the guidelines for two etherification systems and validated them experimentally for a hydration reaction. The results from a case study, the manufacture of tert-amyl methyl ether, are shown here. Superimposing reaction on separation leads to unique design trade-offs. Thus, column diameter depends both on maximum vapor velocity and on packing catalyst density, reactant ratios are a function of conversion and azeotrope formation, the operating pressure affects the relative volatility, chemical equilibrium, and reaction rate (reactive zone temperature), and the reflux ratio impacts both separation and conversion. The guidelines and procedures presented here simplify the detailed reactive column design considerably.