화학공학소재연구정보센터
IEEE Transactions on Automatic Control, Vol.55, No.9, 2069-2084, 2010
Diffusion Strategies for Distributed Kalman Filtering and Smoothing
We study the problem of distributed Kalman filtering and smoothing, where a set of nodes is required to estimate the state of a linear dynamic system from in a collaborative manner. Our focus is on diffusion strategies, where nodes communicate with their direct neighbors only, and the information is diffused across the network through a sequence of Kalman iterations and data-aggregation. We study the problems of Kalman filtering, fixed-lag smoothing and fixed-point smoothing, and propose diffusion algorithms to solve each one of these problems. We analyze the mean and mean-square performance of the proposed algorithms, provide expressions for their steady-state mean-square performance, and analyze the convergence of the diffusion Kalman filter recursions. Finally, we apply the proposed algorithms to the problem of estimating and tracking the position of a projectile. We compare our simulation results with the theoretical expressions, and note that the proposed approach outperforms existing techniques.