Industrial & Engineering Chemistry Research, Vol.49, No.2, 623-632, 2010
Turbulent Liquid-Liquid Dispersion in Sulzer SMX Mixer
This paper presents an experimental study of pressure drop of single-phase flow and liquid-liquid dispersion through a Sulzer SMX mixer in the turbulent flow regime. Emulsification experiments are performed with various numbers of mixing elements from 2 to 20 and different flow rates ranging from 204 to 600 L/h. Pressure drop in single phase flow when Re is greater than 800 is modeled using a correlation based on the Blasius approach. The pressure drop is quantified at high Reynolds numbers for a liquid-liquid system. The droplet size distribution evolves along the mixer, and 10 mixing elements are required to reach break-up coalescence equilibrium in the case of emulsification experiments. Finally, assuming Kolmogorov's theory of isotropic turbulence, a new correlation is established to predict the Sauter mean diameter in this mixing device as a function of the Reynolds and Weber numbers as well as the number of mixing elements.