화학공학소재연구정보센터
Industrial & Engineering Chemistry Research, Vol.49, No.23, 12067-12073, 2010
Ethanol Dehydration Using Hydrophobic and Hydrophilic Polymer Membranes
This paper describes the development of membranes based on perfluoro polymers for the separation of aqueous ethanol mixtures in pervaporation or vapor permeation mode. Hydrophobic perfluoro polymers were selected because their chemical and thermal stability allows them to be used at temperatures up to 130 degrees C in hot ethanol/water vapors. The permeance and selectivity of membranes made from these polymers are quite different from the properties of the cross-linked hydrophilic membranes that are commonly used to separate water/ethanol mixtures. Perfluoro polymers absorb less than 1% liquid in mixtures ranging from pure water to pure ethanol. As a result, the water permeance and water/ethanol selectivity of the membranes are essentially independent of feed water/ethanol composition. However, the water permeances of perfluoro membranes are low for commercial applications. Multilayer composite membranes, consisting of a perfluoro protective layer and a selective hydrophilic polymer underlayer, have the stability of hydrophobic perfluoro membranes combined with the high permeances and good selectivities of hydrophilic membranes.