화학공학소재연구정보센터
International Journal of Control, Vol.83, No.7, 1475-1484, 2010
Robust parameter-dependent fault-tolerant control for actuator and sensor faults
In this article, we study a robust fault-tolerant control (FTC) problem for linear systems subject to time-varying actuator and sensor faults. The faults under consideration are loss of effectiveness in actuators and sensors. Based on the estimated faults from a fault detection and isolation scheme, robust parameter-dependent FTC will be designed to stabilise the faulty system under all possible fault scenarios. The synthesis condition of such an FTC control law will be formulated in terms of linear matrix inequalities (LMIs) and can be solved efficiently by semi-definite programming. The proposed FTC approach will be demonstrated on a simple faulty system with different fault levels and fault estimation error bounds.