화학공학소재연구정보센터
International Journal of Control, Vol.83, No.10, 2053-2066, 2010
Liveness-enforcing supervisors synthesis for a class of generalised Petri nets based on two-stage deadlock control and mathematical programming
In this article we deal with deadlock prevention problems for S4PR, a class of generalised Petri nets, which can well model a large class of flexible manufacturing systems where deadlocks are caused by insufficiently marked siphons. We present a deadlock prevention methodology that is an iterative approach consisting of two stages. The first one is called siphon control, which is to add for each insufficiently marked minimal siphon a control place to the original net. Its objective is to prevent a minimal siphon from being insufficiently marked. The second one, called control-induced siphon control, is to add a control place to the augmented net with its output arcs connecting to the source transitions, which assures that there are no new insufficiently marked siphons generated. At each iteration, a mixed integer programming approach is adopted for generalised Petri nets to obtain an insufficiently marked minimal siphon from the maximal deadly siphon. This way complete siphon enumeration is avoided that is much more time-consuming for a sizeable plant model than the proposed method. The relation of the proposed method and the liveness and reversibility of the controlled net is obtained. Examples are presented to demonstrate the presented method.