International Journal of Control, Vol.83, No.12, 2506-2518, 2010
Robust iterative learning control for linear systems with multiple time-invariant parametric uncertainties
This article presents a novel robust iterative learning control algorithm (ILC) for linear systems in the presence of multiple time-invariant parametric uncertainties.The robust design problem is formulated as a min-max problem with a quadratic performance criterion subject to constraints of the iterative control input update. Then, we propose a new methodology to find a sub-optimal solution of the min-max problem. By finding an upper bound of the worst-case performance, the min-max problem is relaxed to be a minimisation problem. Applying Lagrangian duality to this minimisation problem leads to a dual problem which can be reformulated as a convex optimisation problem over linear matrix inequalities (LMIs). An LMI-based ILC algorithm is given afterward and the convergence of the control input as well as the system error are proved. Finally, we apply the proposed ILC to a generic example and a distillation column. The numerical results reveal the effectiveness of the LMI-based algorithm.
Keywords:iterative learning control;linear systems;time-invariant parametric uncertainties;quadratic performance;min-max problem;linear matrix inequalities;distillation column