Journal of Applied Polymer Science, Vol.119, No.5, 2627-2634, 2011
Wood-High-Density Polyethylene Composites: Water Absorption and Mechanical Properties
In this research, the effect of water absorption on the mechanical properties of wood/high-density polyethylene (HDPE) composites were investigated. HDPE (44005ARPC) was used as the polymer matrix, and spruce sawdust was used as the filler at a maximum loading of 50 wt % of the total weight of each compound. All compounds contained 5 wt % magnesium stearate as a lubricant and 0.5 wt % Irgafos 168 as a heat stabilizer. Four factors in two levels were chosen [talc (filler) at levels of 5 and 15 wt %, zinc borate (fungicide) at levels of 0 and 1 wt %, maleic anhydride polyethylene (coupling agent) at levels of 4 and 6 wt %, and method of mixing (one-step vs. two-step mixing)], and eight compounds were prepared with an L8 Taguchi orthogonal array which has 8 combinations of levels. The effects of each factor at two levels on the diffusion constant and the tensile and bending strengths (under wet and dry conditions) were investigated by the analysis of variance of means with 90% confidence. The optimum level for each factor is reported. The results show that there was a linear correlation between the diffusion constant and tensile and bending strengths when the samples were immersed in distilled water. A higher diffusion constant resulted in much lower tensile and bending strengths with immersion in distilled water until saturation was reached. Scanning electron microscopy images confirmed good mixing when two-steps mixing was used. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 119: 2627-2634, 2011