Journal of Applied Microbiology, Vol.108, No.3, 789-799, 2010
Novel metabolic routes during the oxidation of hydroxylated aromatic acids by the yeast Arxula adeninivorans
Aim: To complete our study on tannin degradation via gallic acid by the biotechnologically interesting yeast Arxula adeninivorans as well as to characterize new degradation pathways of hydroxylated aromatic acids. Methods and Results: With glucose-grown cells of A. adeninivorans, transformation experiments with hydroxylated derivatives of benzoic acid were carried out. The 12 metabolites were analysed and identified by high performance liquid chromatography and GC/MS. The yeast is able to transform the derivatives by oxidative and nonoxidative decarboxylation as well as by methoxylation. The products of nonoxidative decarboxylation of protocatechuate and gallic acid are substrates for further ring fission. Conclusion: Whereas other organisms use only one route of transformation, A. adeninivorans is able to carry out three different pathways (oxidative, nonoxidative decarboxylation and methoxylation) on one hydroxylated aromatic acid. The determination of the K-M-values for protocatechuate and gallic acid in crude extracts of cells of A. adeninivorans cultivated with protocatechuate and gallic acid, respectively, suggests that the decarboxylation of protocatechuate and gallic acid may be catalysed by the same enzyme. Significance and Impact of the Study: This transformation pathway of protocatechuate and gallic acid via nonoxidative decarboxylation up to ring fission is novel and has not been described so far. This is also the first report of nonoxidative decarboxylation of gallic acid by a eukaryotic micro-organism.
Keywords:aromatic acids;Arxula adeninivorans;gallic acid;gallic acid decarboxylase;metabolism;methoxylation;nonoxidative decarboxylation;protocatechuate