화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.49, No.2, 206-210, April, 2011
다양한 방식의 등통로각압축공정으로 가공된 Poly(lactic acid) 시편들의 열 및 기계적 물성
Thermal and Mechanical Properties of Poly(lactic acid) Specimens Fabricated by Various Equal-channel Angular Extrusion Processes
E-mail:
초록
다양한 방식의 등통로각압축공정으로 생분해성 고분자인 폴리젖산수지 시편을 가공하여 각 공정 방식에 따른 시편들의 열 및 기계적 물성의 변화를 조사하였다. 각각 A, BC, C 세 가지의 시편 재 주입 방식과 1, 2, 4의 가공 횟수를 조합한 7개의 시편들을 제작하고, 각 시편의 녹는점, 열분해온도와 같은 열물성을 시차주사열량분석기와 열무게분석기를 사용하여 측정하였다. 시편의 응력변형의 변화를 경도 시험기를 사용하여 측정하고, 각 시편 절단면의 내부 미세구조를 주사전자현미경을 사용하여 관찰하였다. 관찰된 내부 미세구조는 경도시험결과를 설명하는데 정성적인 뒷받침이 되었다. 그 결과 PLA-P2A의 내부 미세 구조가 가장 치밀하고 촘촘히 겹쳐져 있음으로 인하여 내부 응력변형도 가장 많이 관찰되었다.
We fabricated rod-like poly(lactic acid)(PLA) specimens through applying various methods of equal-channel angular extrusion(ECAE) process and investigated the change of thermal and mechanical properties of specimens before and after each ECAE process. Combining three re-injection routes(A, BC, and C) and three pass counts(1, 2 and 4) allowed us to fabricate 7 different PLA specimens. Thermal properties of each specimen were measured by both differential scanning calorimeter and thermo-gravimetric analyzer. Shear strains of each specimen with respect to applied loads were measured by indentation hardness tester. Field emmision scanning electron microscopy was used to observe internal microstructure of cross-section of each specimen. The observed microstructures qualitatively supported the explanation of hardness test results. Among 7 specimens, PLA-P2A showed the biggest shear strain probably due to its dense microstructure.
  1. Perkins WG, Polym. Eng. Sci., “Polymer Toughness and Impact Resistance,”, 39(12), 2445 (1999)
  2. Huang DD, Williams JG, Polym. Eng. Sci., “Comments on Fracture Toughness of Impact Modified Polymers based on the J-integral.", 30, 1341 (1990)
  3. Sue HJ, Wang KJ, J. Polym. Res., “Impact Fracture Mechanisms Investigation of MICA-filled Polyurethane/urea Rim Composites.", 2, 163 (1995)
  4. Sue HJ, Yee AF, J. Mater. Sci., “Study of Fracture Mechanisms of Multiphase Polymers using the Double-notch Four-point-bending Method,”, 28, 2975 (1993)
  5. Segal VM, Mater. Sci. Eng., “Materials Processing by Simple Shear.", A197, 157 (1995)
  6. Xia ZY, Sue HJ, Hsieh AJ, J. Appl. Polym. Sci., “Impact Fracture Behavior of Molecularly Orientated Polycarbonate Sheets,”, 79(11), 2060 (2001)
  7. Xia ZY, Sue HJ, Hsieh AJ, Huang JWL, J. Polym. Sci. B: Polym. Phys., “Dynamic Mechanical Behavior of Oriented Semicrystalline Polyethylene Terephthalate,”, 39(12), 1394 (2001)
  8. Weon JI, Creasy TS, Sue HJ, Hsieh AJ, Polym. Eng. Sci., “Mechanical Behavior of Polymethylmethacrylate With Molecules Oriented via Simple Shear,”, 45(3), 314 (2005)
  9. Weon JI, Xia ZY, Sue HJ, J. Polym. Sci. B: Polym. Phys., “Morphological Characterization of Nylon-6 Nanocomposite Following a Large-Scale Simple Shear Process.", 43(24), 3555 (2005)
  10. Nakashima K, Horita Z, Nemoto M, Langdon TG, Mater. Sci. Eng., “Development of a Multi-pass Facility for Equal-channel Angular Pressing to High Total Strains,”, A281, 82 (2000)
  11. Cui H, Zhang L, Gong J, Ma Y, Ying W, Macromol. Symp., “Reinforcement of Biodegradable Poly(DL-lactic acid) Materials by Equalchannel Angular Extrusion,”, 242, 55 (2006)
  12. Iwahashi Y, Wang J, Horita Z, Nemoto M, Langdon TG, Scripta Mater., “Principle of Equal-channel Angular Pressing for the Processing of Ultra-fine Grained Materials,", 35, 143 (1996)
  13. Segal VM, Hartwig KT, Goforth RE, Mater. Sci. Eng., “In situ Composites Processed by Simple Shear,”, 224, 107 (1997)
  14. Ferrasse S, Segal VM, Hartwig KT, Goforth RE, Metall. Mater. Trans., “Microstructure and Properties of Copper and Aluminum Alloy 3003 heavily worked by equal channel angular extrusion,”, 28, 1047 (1997)
  15. Segal VM, Mater. Sci. Eng., “Equal Channel Angular Extrusion: from Macromechanics to Structure Formation,”, 271, 322 (1999)