화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.49, No.2, 250-255, April, 2011
폴리이미드 중공사막을 이용한 혼합기체로부터 H2S 제거 및 CO2/CH4 분리에 관한 연구
H2S Removal and CO2/CH4 Separation of Ternary Mixtures Using Polyimide Hollow Fiber Membrane
E-mail:,
초록
본 연구는 막 분리 공정을 이용한 것으로 수소의 에너지원을 이용가능한 메탄을 정제하기 위해 바이오가스 중 이산화탄소와 메탄의 분리 및 황화수소의 제거하고자 한다. 막은 건/습식 상전이 법을 이용하여 중공사공 형태로 제조하고 표면 실리콘 코팅 후 모듈을 제조하였다. 제조된 중공사 막의 구조특성을 확인하기 위해 전자주사 현미경 관찰을 통하여 치밀한 표면과 망상구조의 비대칭 구조를 확인하였다. 압력과 온도가 증가함에 따라 이산화탄소의 투과도는 증가하였고, 이산화탄소와 메탄의 선택도 역시 증가하는 것으로 나타났다. 혼합가스의 경우 압력 및 온도가 증가함에 따라 메탄 농도는 100%에 가까웠으며 이산화탄소와 황화수소의 제거효율도 증가하였다. Retentate 유량증가와 압력 온도감소에 따라 메탄 농도 감소 및 회수율이 증가하는 경향을 나타내었다.
In this study, by using the polymeric membrane separation process, the CO2/CH4 separation and H2S removal from biogas were performed in order to CH4 purification and enrichment for the fuel cell energy source application. Fibers were spun by dry/wet phase inversion method. The module was manufactured by fabricating fibers after surface coating with silicone elastomer. The scanning electron microscopy(SEM) studies showed that the produced fibers typically had an asymmetric structure; a dense top layer supported by a porous, sponge substructure. The permeance of CO2 and CO2/CH4 selectivity increased with pressure and temperature. Mixture gas with increasing pressure and temperature, removal efficiency of the CO2 and H2S were decreased while concentration of CH4 was increased up to 100%. When retentate flow rate was increased with the decreasing of pressure and temperature the CH4 recovery ratio in retentate side was increased while the CH4 purity in retentate side was decreased.
  1. Shin SB, Gaur A, Song HJ, Park JW, J. Korean Soc. Water Wastewater., “CO2 Emission Reduction Potential of Gas Engibe and Fuel Cell in Electricity Generaton Using Anaerobic Digestion Gas", 26(1), 1 (2009)
  2. Harasimowicz M, Orluk P, Zakrzewska-Trznadel G, Chmielewskia AG, J. Hazard. Mater., “Application of Polyimide Membranes for Biogas Purification and Enrichment", 144(3), 698 (2007)
  3. Kim NJ, Choi JM, Ji EJ, J. Korean Soc. Env. Eng., “Solvent Selection for the Detection of Siloxanes in Landfill Gas,”, 29(8), 915 (2007)
  4. Ahn JS, Lee SM, HWAHAK KONGHAK, “A Study on the Separation Characteristics of CH4-CO2 Mixed Gas by Polyimide Hollow Fiber Membrane,”, 34(6), 675 (1996)
  5. Hao J, Rice PA, Stern SA, J. Membr. Sci., “Upgrading Low-quality Natural Gas with H2S-and CO2-Selective Polymer Membranes. Part II. Process Design, Economics, and Sensitivity Study of Membrane Stages with Recycle Streams", 320(1-2), 108 (2008)
  6. Zhang YF, Musseman IH, Ferraris JP, Balkus KJ, J. Membr. Sci., “Gas Permeability Properties of Matrimid Membranes Containing the Metal-organic Framework Cu-BPY-HFS", 313(1-2), 170 (2008)
  7. Sridhar S, Veerapur RS, Patil MB, Gudasi KB, Aminabhavi TM, J. Appl. Polym. Sci., “Matrimid Polyimide Membranes for the Searation of Carbon Dioxide from Methane", 106(3), 1585 (2007)
  8. Zhao HY, Cao YM, Ding XL, Zhou MQ, Liu JH, Yuan Q, J. Membr. Sci., “Poly(ethylene oxide) Induced Cross-linking Modification of Matrimid Membranes for Selective Separation of CO2", 320(1-2), 179 (2008)
  9. Cecopieri-Gomez ML, Palacios-Alquisira J, Dominguez JM, J. Membr. Sci., “On the Limits Gas Separation in CO2/CH4, N2/CH4, and CO2/N2 Binary Mixture Using Polyimide Membranes,”, 293(1-2), 53 (2007)
  10. Wallace DW, Ch BS, Cm BS, “Crosslinked Hollow Fiber Membranes for Natural Gas Purification and Their Manufacture from Novel Polymers,” The University of Texas at Austin (2004)
  11. Kim DH, An YM, Jo HD, Park JS, Lee HK, J. Memb. Soc. Korea., “Studies on the N2/SF6 Permeation Behavior Using the Polyethersulfone on the N2/SF6 Permeation Behavior Using the Polyethersulfone", 19(3), 244 (2009)
  12. Park HH, Deshwal BR, Jo HD, Choi WK, Kim IW, Lee HK, Desalination, “Absorption of Nitrogen Dioxide by PVDF Hollow Fiber Membranes in a G.L Contactor", 243(1-3), 52 (2009)
  13. Park HH, Deshwal BR, Kim IW, Lee HK, J. Membr. Sci., “Absorption of SO2 from Flue Gas Using PVDF Hollow Fiber Membranes in a Gas.iquid Contactor", 319(1-2), 29 (2008)
  14. Park BR, Rhim JW, Lee SY, Hwang TS, Lee HK, J. Memb. Soc. Korea., “Membrane Surface Modification through Direct Fluorination for Gas-Liquid Contactor", 17(4), 345 (2007)
  15. Kim JH, Sohn WI, Choi SH, Lee SB, J. Memb. Soc. Korea., “Preparation of Asymmetric Polyethersulfone Hollow Fiber Membranes for Flue Gas Separation", 15(2), 147 (2005)
  16. Mohammadi T, Moghadam MT, Saeidi M, Mahdyarfar M, Ind. Eng. Chem. Res., “Acid Gas Permeation Through Poly(Ester Urethane Urea) Membrane”, 47(19), 7361 (2008)
  17. An YM, Kim DH, Jo HD, Seo YS, Park YS, Lee HK, J. Memb. Soc. Korea., “The Permeation Behaviors of H2S/CH4 Using Polyimide Hollow Fiber Membrane", 19(4), 261 (2009)
  18. Winston Ho WS, Sirkar KK, Membrane Handbook, Van Nostrand Reinhold, New York (1992)
  19. Xiao Y, Low BT, Hosseini SS, Chung TS, Paul DR, Peog. Polym. Sci., “The Strategies of Molecular Architecture and Modification of Polyimide-based Membranes for CO2 Removal from Natural gas-A Review", 34, 561 (2009)
  20. Kim DH, Kim GL, Jo HD, Park JS, Lee HK, Korean Chem. Eng. Res., “Study on the Separation of N2/SF6 Mixture Gas Using Polyimide Hollow Fiber Membrane", 48(5), 660 (2010)