화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.17, No.1, 154-157, January, 2011
Methane production from carbon monoxide and hydrogen over nickel.alumina xerogel catalyst: Effect of nickel content
E-mail:
Nickel.alumina xerogel catalysts (XNiAl) with different nickel contents (X, wt%) were prepared by a single-step sol-gel method for use in the methane production from carbon monoxide and hydrogen. The effect of nickel content on the catalytic performance of XNiAl catalysts was investigated. Conversion of CO and yield for CH4 over XNiAl catalysts drastically increased with increasing nickel content from 20 to 40 wt%, but they were almost constant at nickel content above 40 wt%. This indicates that XNiAl catalysts with nickel content above 40 wt% served as efficient catalysts in the methane production from carbon monoxide and hydrogen. The enhanced catalytic performance of nickel-alumina xerogel catalysts with nickel content above 40 wt% was attributed to the abundant active surface nickel species caused by welldeveloped framework mesopores and large pore size of the catalysts. When considering the amount of nickel used for the preparation of catalyst, it is reasonable to conclude that the optimal nickel content of nickel-alumina xerogel catalyst for methanation reaction was 40 wt%.
  1. Gallagher Jr JE, Euker Jr CA, Int. J. Energy Res., 4, 137 (2007)
  2. Kopyscinski J, Schildhauer TJ, Biollaz SMA, Fuel., 89, 1763 (2009)
  3. Wenzhi Z, Hongjun W, Kai Q, Petrol. Explor. Dev., 36, 280 (2009)
  4. Seo JG, Youn MH, Chung JS, Song IK, J. Ind. Eng. Chem., 16(5), 795 (2010)
  5. Panagiotopoulou P, Kondarides DI, Verykios XE, Appl. Catal. A: Gen., 344(1-2), 45 (2008)
  6. Pan ZY, Dong MH, Meng XK, Zhang XX, Mu XH, Zong BN, Chem. Eng. Sci., 62(10), 2712 (2007)
  7. Kowalczyk Z, Stolecki K, Rarog-Pilecka W, Miskiewicz E, Wilczkowska E, Karpiniski Z, Appl. Catal. A: Gen., 342(1-2), 35 (2008)
  8. Xavier KO, Sreekala R, Rashid KKA, Yusuff KKM, Sen B, Catal. Today, 49(1-3), 17 (1999)
  9. Czekaj L, Loviat F, Raimondi F, Wambach J, Biollaz S, Wokaun A, Appl. Catal. A: Gen., 329, 68 (2007)
  10. Habazaki H, Yamasaki M, Zhang BP, Kawashima A, Kohno S, Takai T, Hashimoto K, Appl. Catal. A: Gen., 172(1), 131 (1998)
  11. Mirodatos C, Praliaud H, Primet M, J. Catal., 107, 275 (1987)
  12. Erekson EJ, Sughrue EL, Bartholomew CH, Fuel Process. Technol., 5, 91 (1981)
  13. Ocampo F, Louis B, Roger AC, Appl. Catal. A: Gen., 369(1-2), 90 (2009)
  14. Rostrup-Nielsen JR, Pedersen K, Sehested J, Appl. Catal. A: Gen., 330, 134 (2007)
  15. Kramer M, Stowe K, Duisberg M, Muller F, Reiser M, Sticher S, Maier WF, Appl. Catal. A: Gen., 369(1-2), 42 (2009)
  16. Seo JG, Youn MH, Lee HI, Kim JJ, Yang E, Chung JS, Kim P, Song IK, Chem. Eng. J., 141(1-3), 298 (2008)
  17. Abouarnadasse S, Pajonk GM, Germain JE, Teichner SJ, Appl. Catal., 13, 119 (1984)
  18. Roy RA, Roy R, Mater. Res. Bull., 19, 169 (1984)
  19. Osaki T, Horiuchi T, Sugiyama T, Suzuki K, Mori T, J. Non Cryst. Solids., 225, 111 (1998)
  20. Twigg MV, Richardson JT, Appl. Catal. A: Gen., 190(1-2), 61 (2000)
  21. Groen JC, Peffer LAA, Re´ rez-Ramı´rez J, Micropor. Mesopor. Mater., 60, 1 (2003)
  22. Boissie` re C, Larbot A, Lee AVD, Kooyman P, Prouzet E, Chem. Mater., 12, 2902 (2000)
  23. Kim P, Kim Y, Kim H, Song IK, Yi J, Appl. Catal. A: Gen., 272(1-2), 157 (2004)
  24. Seo JG, Youn MH, Nam I, Hwang S, Chung JS, Song IK, Catal. Lett., 130(3-4), 410 (2009)
  25. Suh DJ, Park TJ, Kim JH, Kim KL, J. Non Cryst. Solids., 225, 168 (1998)