Journal of Colloid and Interface Science, Vol.349, No.1, 300-306, 2010
Microemulsion phase as a medium for electrodeposition of nickel and electron-transfer study of ferrocyanide-ferricyanide redox system
We report our electrochemical studies in a W/O microemulsion phase consisting of a ternary mixture of water, Triton X-100, and toluene. The microemulsion phase plays the dual role of a template in the electrodeposition of nickel and as an electrolytic medium in the study of electron-transfer kinetics. The nickel electrodeposits obtained using this microemulsion phase as a template were characterized by surface analysis techniques such as scanning electron microscopy (SEM) and X-ray diffraction (XRD) studies while cyclic voltammetry (CV) was used to determine the electro-active true surface area of the template-deposited nickel. For electron-transfer studies, CV and electrochemical impedance spectroscopy were employed using potassium ferro/ferricyanide as a redox probe. In contrast to the diffusion-controlled process of the redox probe in aqueous medium, a charge-transfer control was observed in the W/O microemulsion phase. We found that the rate constant value for this particular redox reaction in the microemulsion phase is decreased by about four orders of magnitude when compared to the corresponding value in aqueous medium. The observed phenomenon has been correlated to the structure of the W/O microemulsion phase at the interface, exhibiting a microelectrode array behavior. (C) 2010 Elsevier Inc. All rights reserved.