화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.353, No.1, 98-106, 2011
Construction and deconstruction of multilayer films containing polycarboxybetaine: Effect of pH and ionic strength
The influences of pH and NaCl concentration of dipping solutions and the pH and NaCl concentration of disintegration solutions on the disintegration behaviors of poly(4-vinylpyridiniomethanecarboxylate) (PVPMC)/poly(sodium 4-styrenesulfonate) (PSS) (PVPMC/PSS) multilayer films were investigated by ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FT-IR), quartz crystal microbalance (QCM) and atomic force microscopy (AFM). It was found that the disintegration rates and degrees of PVPMC/PSS multilayer films in neutral water could be well controlled by changing pH of dipping solutions and immersion time during the disintegration process. Furthermore, PVPMC/PSS multilayer films could be disintegrated completely and rapidly in pH 8 alkali solution or physiological condition (i.e., 0.15 M NaCl solution). The controllable disintegration of PVPMC/PSS multilayer films was then utilized to fabricate PEC/PSS free-standing multilayer films, in which PEC was a positively charged polyelectrolyte complex made from excessive poly(diallyldimethylammonium) (PDDA) and PSS. The experimental results indicated that the disintegration rates of PVPMC/PSS sacrificial sublayer strongly affected the integrity of the resultant PEC/PSS free-standing multilayer films. Only free-floating PEC/PSS was released from neutral water by disintegrating PVPMC/PSS multilayer sublayers. However, large size flat and tube-like PEC/PSS free-standing multilayer films with good mechanical properties were obtained facilely from pH 8 alkali solution and 0.15 M NaCl solution, respectively. The preparation of such free-standing films at physiological condition may be useful in the biological or medical application. (C) 2010 Elsevier Inc. All rights reserved.