Journal of Colloid and Interface Science, Vol.355, No.2, 274-281, 2011
UV luminescent organic-capped ZnO quantum dots synthesized by alkoxide hydrolysis with dilute water
A novel synthesis route to organic-capped and colloidal ZnO quantum dots (QDs) has been developed. Specifically, zinc-di-t-butoxide and zinc-di-n-butoxide are hydrolyzed by very dilute water (400-600 mass ppm) in hydrophilic benzylamine and polymerized to ZnO by dehydration and/or a butanol elimination reaction. Growth of the ZnO QDs and exchange of the surface capping ligand from the hydroxyl groups and/or benzylamine to the oleylamine occur by heating the colloidal solution after addition of the oleylamine at 100-180 degrees C. The final ZnO QDs with diameters in the range of 3-7 nm are highly dispersible in various organic solvents. The ZnO QDs exhibit the quantum size effect upon UV emission; it was controlled between 3.39 and 3.54 eV in the present study. The defect-related Vis emission decreased and the UV emission becomes dominant when zinc-di-n-butoxide with a 99.99% zinc purity is used as the starting material. The intensity of the photoluminescence UV emission is 1.5 times higher than that of the Vis emission. (C) 2010 Elsevier Inc. All rights reserved.