화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.355, No.2, 458-463, 2011
TODGA based w/o microemulsion in dodecane: An insight into the micellar aggregation characteristics by dynamic light scattering and viscometry
N,N,N',N'-tetraoctyl diglycolamide abbreviated as TODGA, is one of the most promising extractant for actinide partitioning from high level nuclear waste. It forms reverse micelles in non polar solvents on equilibration with aqueous HNO3 solutions. This reverse micellar system undergoes phase separation into dilute and concentrated reverse micellar solutions at high aqueous acid concentration. Small angle neutron scattering (SANS) studies reported in the literature explained this phenomenon based on gas-liquid type phase transition in the framework of Baxter adhesive hard sphere theory in the presence of a strong inter-micellar attractive interaction. The present investigation attempts to throw further light on this system by carrying out systematic dynamic light scattering (DLS) and viscometry studies, and their modeling on the TODGA reverse micellar solutions in the dodecane medium. The variation of the diffusion coefficient with the micellar volume fraction observed from the DLS studies is suggestive of the presence of an attractive interaction between the TODGA reverse micelles, which weakens at the high micellar volume fraction due to the increased dominance of the excluded volume effect. It is suggested that this weakened interaction is responsible for the absence of phase separation in this system at high TODGA concentration. The results thus highlight the importance of the presence of an attractive interaction between the TODGA micelles in determining the observed phase separation in the TODGA reverse micellar systems. The modeling of the DLS and viscosity data, however, suggest that the characteristic stickiness parameter of this system could be smaller than the critical value required for inducing a gas-liquid type phase transition. (C) 2010 Elsevier Inc. All rights reserved.