화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.356, No.1, 277-285, 2011
Adsorption of atrazine from aqueous electrolyte solutions on humic acid and silica
The adsorption of, the still widely used, herbicide atrazine on model soil components, such as humic acid and humic acid-silica gel mixtures, was investigated in a series of batch experiments, under different experimental conditions (ionic strength, temperature, and pH). The investigation aimed at obtaining an estimate of the contribution of each of the soil components on the adsorption of atrazine from aqueous solutions. The kinetics of atrazine adsorption on humic acid showed two steps: a fast step, of a few hours duration, and a second slow step, which continued for weeks. The kinetics of adsorption data gave a satisfactory fit to the Elovich equation. the adsorption of atrazine on the test substrates was found to be reversible in all cases. The atrazine uptake data on the test substrates were fitted best with the Freundlich adsorption isotherm. The ionic strength of the atrazine aqueous solutions did affect the amount of the atrazine adsorbed on the test substrates, suggesting that electrostatic forces between atrazine molecules and soil play a significant role in the adsorption process. An increase of temperature resulted in a decrease of atrazine adsorption on humic acid at low atrazine equilibrium concentrations. However, for higher levels of equilibrium concentrations (>= 3 mg/L) the amount of atrazine adsorbed onto the test substrate increased as temperature increased. The calculated isosteric enthalpies of adsorption ranged between slightly exothermic at low atrazine uptake and slightly endothermic at high atrazine uptake, all values being in the range of physisorption. (C) 2011 Elsevier Inc. All rights reserved.