Journal of Hazardous Materials, Vol.176, No.1-3, 1018-1026, 2010
Adsorption of humic acid by bi-functional resin JN-10 and the effect of alkali-earth metal ions on the adsorption
This study investigated the adsorption of humic acid (HA) by bi-functional resin JN-10, which removed the HA more effectively than the commercial resins D-301, D-201, XAD-7, and globe active carbon F-400. The difference between the FT-IR spectroscopy and C-13 NMR analysis of JN-10 before and after it adsorbing the HA revealed that both hydrophobic interaction and electric attraction were the adsorption force for the HA. The related thermodynamic parameters exhibited that the adsorption of the HA by JN-10 was an endothermic process. The occurring of adsorption was due to the increase of entropy, and the electric attraction was also a main adsorption force. In order to investigate the influence of the molecule weight (MW) of the HA on its removal by JN-10, the HA with the MWs ranging from 2000 to 100,000 Da was divided into six fractions by ultra-filtration. The HA with a medium MW (6000-10,000 Da) was preferentially removed by JN-10 due to the synergistic effect of hydrophilicity, molecular size, and aromaticity of the HA. The adsorption capacity of JN-10 for the HA increased in the presence of low concentration of alkali-earth metal ions Ca2+ and Mg2+, which neutralized the negative charges of the HA, but it decreased as the concentration of these ions increased because the hydrates formed by the alkali-earth metal ions occupied the adsorption sites of the resin. (C) 2010 Published by Elsevier B.V.