Journal of Hazardous Materials, Vol.177, No.1-3, 420-427, 2010
Insight into removal kinetic and mechanisms of anionic dye by calcined clay materials and lime
Our recent work reported that a mixed adsorbent with natural clay materials and lime demonstrated an enhanced capacity and efficiency to remove anionic Congo Red dye from wastewater. This study aims to investigate the removal kinetic and mechanisms of the mixed materials involved in the decolourisation of the dye to maximise their prospective applications for industrial wastewater treatment. The experimental results showed that dye removal was governed by combined physiochemical reactions of adsorption, ion-exchange, and precipitation. Ca-dye precipitation contributed over 70% total dye removal, followed by adsorption and ion-exchange. The dye removal kinetic followed the pseudo-second-order expression and was well described by the Freundlich isotherm model. This study indicated pH was a key parameter to govern the removal mechanisms, i.e. adsorption/coagulation at acidic pH and precipitation at basic condition. Yet, the overall removal efficiency was found to be independent to the operation conditions, resulting in more than 94% dye removal. This work revealed that the mixed clays and lime can be applied as alternative low-cost adsorbents for industrial wastewater treatment. (C) 2009 Elsevier B.V. All rights reserved.