화학공학소재연구정보센터
Journal of Materials Science, Vol.45, No.13, 3483-3489, 2010
Solvothermal synthesis and characterization of size-controlled monodisperse Fe3O4 nanoparticles
Monodisperse Fe3O4 nanoparticles with narrow size distribution could be successfully synthesized in large quantities by a facile solvothermal synthetic method in the presence of oleic acid and oleylamine. Well-defined assembly of uniform nanoparticles with average sizes of 8 nm can be obtained without a further size-selection process. The sizes of final products could be readily tuned from 5 to 12 nm by adjusting the experimental parameters such as reaction time, temperature, and surfactants. The phase structures, morphologies, and magnetic properties of the as-prepared products were investigated in detail by X-ray diffraction, transmission electron microscopy, selected area electron diffraction, high-resolution transmission electron microscopy, and magnetometry with a superconducting quantum interference device. The magnetic study reveals that the as-synthesized nanoparticles are ferromagnetic at 2 K while they are superparamagnetic at 300 K.