화학공학소재연구정보센터
Journal of Materials Science, Vol.45, No.23, 6540-6555, 2010
Fracture toughness modification by using a fibre laser surface treatment of a silicon nitride engineering ceramic
Surface treatment of a silicon nitride (Si3N4) engineering ceramic with fibre laser radiation was conducted to identify changes in the fracture toughness as measured by K-1c. A Vickers macro-hardness indentation method was adopted to determine the K-1c of the Si3N4 before and after fibre laser surface treatment. Optical and a scanning electron microscopy (SEM), a co-ordinate measuring machine and a focus variation technique were used to observe and measure the dimensions of the Vickers indentation, the resulting crack lengths, as well as the crack geometry within the as-received and fibre laser-treated Si3N4. Thereafter, computational and analytical methods were employed to determine the K-1c using various empirical equations. The equation K-1c = 0.016 (E/Hv)(1/2) (P/c(3/2)) produced most accurate results in generating K-1c values within the range from 4 to 6 MPa m(1/2). From this it was found that the indentation load, hardness, along with the resulting crack lengths in particular, were the most influential parameters within the K-1c equation used. An increase in the near surface hardness of 4% was found with the Si3N4 in comparison with the as-received surface, which meant that the fibre laser-treated surface of the Si3N4 became harder and more brittle, indicating that the surface was more prone to cracking after the fibre laser treatment. Yet, the resulting crack lengths from the Vickers indentation tests were reduced by 37% for the Si3N4 which in turn led to increase in the K-1c by 47% in comparison with the as-received surface. It is postulated that the fibre laser treatment induced a compressive stress layer by gaining an increase in the dislocation movement during elevated temperatures from the fibre laser surface processing. This inherently increased the compressive stress within the Si3N4 and minimized the crack propagation during the Vickers indentation test, which led to the fibre laser-radiated surface of the Si3N4 engineering ceramic to have more resistance to crack propagation.