Journal of Materials Science, Vol.46, No.7, 2221-2228, 2011
Synthesis and photopolymerization kinetics of linear alicyclic urethane acrylate macromonomer in presence of reactive diluents
This study deals with the photopolymerization of a macromonomer in the presence of reactive diluents using Photo Differential Scanning Calorimetry or Photo DSC. The kinetic profiles of these systems showed that the rate of photopolymerization rapidly increases at very early stages of the reaction. The rate of reaction was further found to increase with the addition of crosslinking agents. The addition of trifunctional crosslinking agent to the macromonomeric formulation resulted in a higher polymerization rate and conversion than that of a difunctional crosslinking agent. From the heat flow profiles, the kinetic parameters such as induction time, time to attain peak maximum, rate of maximum polymerization, and final conversion were noted for all the formulations. The initiation of photopolymerization was found to depend on the functionality while the in situ viscosity controlled the time scale for reaction diffusion which resulted in varying levels of conversions. Other parameters such as effect of temperature and concentration of photoinitiator on photocuring kinetics are also discussed.