화학공학소재연구정보센터
Journal of Polymer Science Part B: Polymer Physics, Vol.48, No.19, 2052-2064, 2010
Fundamental Study of Crystallization, Orientation, and Electrical Conductivity of Electrospun PET/Carbon Nanotube Nanofibers
The morphology, structure, and properties of polyethylene terephthalate (PET)/Carbon Nanotubes (CNT) conductive nanoweb were studied in this article. Nanocomposite nanofibers were obtained through electrospinning of PET solutions in trifluoroacetic acid (TFA)/dichloromethane (DCM) containing different concentrations and types of CNTs. Electrical conductivity measurements on nanofiber mats showed an electrical percolation threshold around 2 wt % multi-wall carbon nanotubes (MWCNT). The morphological analysis results showed smoother nanofibers with less bead structures development when using a rotating drum collector especially at high concentrations of CNTs. From crystallographic measurements, a higher degree of crystallinity was observed with increasing CNT concentrations above electrical percolation. Spectroscopy results showed that both PET and CNT orientation increased with the level of alignment of the nanofibers when the nanotube concentration was below the electrical percolation threshold; while the orientation factor was reduced for aligned nanofibers with higher content in CNT. Considerable enhancement in mechanical properties, especially tensile modulus, was found in aligned nanofibers; at least six times higher than the modulus of random nanofibers at concentrations below percolation. The effect of alignment on the mechanical properties was less important at higher concentrations of CNTs, above the percolation threshold. (C) 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 2052-2064, 2010