Journal of Power Sources, Vol.195, No.21, 7359-7369, 2010
High performance proton exchange membrane fuel cell electrode assemblies
The conventional 5-layer membrane electrode assembly (MEA) consists of a proton exchange membrane (PEM) locating at its center, two layers of Pt-C-40 (Pt content 40 wt%) locating next on both surfaces of PEM, and two gas diffusion layers (GDL) locating next on the outer surfaces of Pt-C layers (structure-a MEA). In this paper, we report three modified MEAs consisting of Pt-C-40 (Pt content 40 wt%) and Pt-C-80 (Pt content 80 wt%) catalysts. These are: (1) 7-layer structure-b MEA with a thin Pt-C-80 layer locating between Pt-C-40 layer and PEM: (2) 7-layer structure-c MEA with a thin Pt-C-80 layer locating between Pt-C-40 layer and GDL; and (3)5-layer structure-d MEA with Pt-C-40 and Pt-C-80 mixing homogeneously and locating between PEM and GDL. Under a fixed Pt loading, we find structure-b, -c, and -d MEAs with 20-40 wt% Pt contributed from Pt-C-80 have better fuel cell performance than structure-a MEA consisting only of Pt-C-40. The reasons for the better fuel cell performance of these modified MEAs are attributed to the better feasibility for O-2 gas to reach cathode Pt particles and lower proton transport resistance in catalyst layers of the modified MEAs than structure-a MEA. (C) 2010 Published by Elsevier B.V.