Journal of Power Sources, Vol.196, No.5, 2754-2758, 2011
Ceria-based nanocomposite with simultaneous proton and oxygen ion conductivity for low-temperature solid oxide fuel cells
The samarium doped ceria-carbonate (SDC/Na2CO3) nanocomposite systems have shown to be excellent electrolyte materials for low-temperature SOFCs, yet, the conduction mechanism is not well understood. In this study, a four-probe d.c. technique has been successfully employed to study the conduction behavior of proton and oxygen ion in SDC/Na2CO3 nanocomposite electrolyte. The results demonstrated that the SDC/Na2CO3 nanocomposite electrolyte possesses unique simultaneous proton and oxygen ion conduction property, with the proton conductivity 1-2 orders of magnitude higher than the oxygen ion conductivity in the temperature range of 200-600 degrees C, indicating the proton conduction in the nanocomposite mainly accounts for the enhanced total ionic conductivity. It is suggested that the interface in composite electrolyte supplies high conductive path for proton, while oxygen ions are probably transported by the SDC grain interiors. An empirical "Swing Model" has been proposed as a possible mechanism of superior proton conduction. (C) 2010 Elsevier B.V. All rights reserved.
Keywords:Nanocomposite electrolyte;Samarium doped ceria (SDC);Proton conductivity;Oxygen ion conductivity;Solid oxide fuel cells (SOFCs)