Journal of Process Control, Vol.20, No.8, 902-911, 2010
Fault detection and isolation of faults in a multivariate process with Bayesian network
The main objective of this paper is to present a new method of detection and isolation with a Bayesian network. For that, a combination of two original works is made. The first one is the work of Li et al. [1] who proposed a causal decomposition of the T-2 statistic. The second one is a previous work on the detection of fault with Bayesian networks [2], notably on the modeling of multivariate control charts in a Bayesian network. Thus, in the context of multivariate processes, we propose an original network structure allowing to decide if a fault has appeared in the process. This structure permits the isolation of the variables implicated in the fault. A particular interest of the method is the fact that the detection and the isolation can be made with a unique tool: a Bayesian network. (C) 2010 Elsevier Ltd. All rights reserved.