화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.132, No.15, 5494-5500, 2010
Probing the Ternary Complexes of Indoleamine and Tryptophan 2,3-Dioxygenases by Cryoreduction EPR and ENDOR Spectroscopy
We have applied cryoreduction/EPR/ENDOR techniques to characterize the active-site structure of the ferrous-oxy complexes of human (hIDO) and Shewanella oneidensis (sIDO) indoleamine 2,3-dioxygenases, Xanthomonas campestris (XcTDO) tryptophan 2,3-dioxygenase, and the H55S variant of XcTDO in the absence and in the presence of the substrate L-Trp and a substrate analogue, L-Me-Trp. The results reveal the presence of multiple conformations of the binary ferrous-oxy species of the IDOs. In more populated conformers, most likely a water molecule is within hydrogen-bonding distance of the bound ligand, which favors protonation of a cryogenerated ferric peroxy species at 77 K. In contrast to the binary complexes, cryoreduction of all of the studied ternary [enzyme-O-2-Trp] dioxygenase complexes generates a ferric peroxy heme species with very similar EPA and H-1 ENDOR spectra in which protonation of the basic peroxy ligand does not occur at 77 K. Parallel studies with L-Me-Trp, in which the proton of the indole nitrogen is replaced with a methyl group, eliminate the possibility that the indole NH group of the substrate acts as a hydrogen bond donor to the bound O-2, and we suggest instead that the ammonium group of the substrate hydrogen-bonds to the dioxygen ligand. The present data show that substrate binding, primarily through this H-bond, causes the bound dioxygen to adopt a new conformation, which presumably is oriented for insertion of O-2 into the C-2-C-3 double bond of the substrate. This substrate interaction further helps control the reactivity of the heme-bound dioxygen by "shielding" it from water.