화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.132, No.19, 6646-6646, 2010
Separating Ion and Electron Transport: The Bilayer Light-Emitting Electrochemical Cell
The current generation of polymer light-emitting electrochemical cells (LECs) suffers from insufficient stability during operation. One identified culprit is the active material, which comprises an intimate blend between an ion-conducting electrolyte and an electron-transporting conjugated polymer, as it tends to undergo phase separation during long-term operation and the intimate contact between the ion- and electron-transporting components provokes side reactions. To address these stability issues, we present here a bilayer LEC structure in which the electrolyte is spatially separated from the conjugated polymer. We demonstrate that employing this novel device structure, with its clearly separated ion- and electron-transport paths, leads to distinctly improved LEC performance in the form of decreased turn-on time and improved light emission. We also point out that it will allow for the utilization of combinations of active materials having mutually incompatible solubilities.