Journal of the American Chemical Society, Vol.132, No.20, 6929-6929, 2010
Use of a Copper-Chelated Lipid Speeds Up NMR Measurements from Membrane Proteins
Recent studies have demonstrated the abilities of solid-state NMR techniques to solve atomic-level-resolution structures and dynamics of membrane-associated proteins and peptides. However, high-throughput applications of solid-state NMR spectroscopy are hampered by long acquisition times due to the low sensitivity of the technique. In this study, we demonstrate the use of a paramagnetic copper-chelated lipid to enhance the spin-lattice relaxation and thereby speed up solid-state NMR measurements. Fluid Lamellar-phase bicelles composed of a lipid, detergent, and the copper-chelated lipid and containing a uniformly N-15-labeled antimicrobial peptide, subtilosin A, were used at room temperature. The use of a chelating lipid reduces the concentration of free copper and limits RF-induced heating, a major problem for fluid samples. Our results demonstrate a 6.2-fold speed increase and a 2.7-fold improvement in signal-to-noise ratio for solid-state NMR experiments under magic-angle spinning and static conditions, respectively. Furthermore, solid-state NMR measurements are shown to be feasible even for nanomole concentrations of a membrane-associated peptide.