Journal of the American Chemical Society, Vol.132, No.44, 15573-15579, 2010
Amphiphilic Polyethylenes Leading to Surfactant-Free Thermoresponsive Nanoparticles
Linear copolymers of ethylene and acrylic acid (PEAA) were prepared by catalytic polymerization of ethylene and tert-butyl acrylate followed by hydrolysis of the ester groups. The copolymers contained COOH groups inserted into the crystalline unit cell with formation of intramolecular hydrogen-bonds, as established on the basis of differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) studies. A solvent-exchange protocol, with no added surfactant, converted a solution in tetrahydrofuran of a PEAA sample containing 12 mol % of acrylic acid (AA) into a colloidally stable aqueous suspension of nanoparticles. Transmission electron microscopy (TEM), dynamic light scattering (DLS), and high sensitivity differential scanning calorimetry (HS-DSC) were used to characterize the nanoparticles. They are single crystals of elongated shape with a polar radius of 49 nm (sigma = 15 nm) and an equatorial radius of 9 nm (sigma = 3 nm) stabilized in aqueous media via carboxylate groups located preferentially on the particle/water interface. The PEAA (AA: 12 mol %) nanoparticles dispersed in aqueous media exhibited a remarkable reversible thermoresponsive behavior upon heating/cooling from 25 to 80 degrees C.