화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.133, No.9, 2872-2874, 2011
Role of Liquid Polymorphism during the Crystallization of Silicon
Using molecular simulation, we establish the pivotal role played by liquid polymorphs during the crystallization of silicon. When undercooled at a temperature 20% below the melting point, a silicon melt is under the form of the highly coordinated, high-density liquid (HDL) polymorph. We find that crystallization starts with the formation, within the HDL liquid, of a nanosized droplet of the least stable liquid polymorph, known as the almost tetracoordinated low-density liquid (LDL) polymorph. We then show that the crystalline embryo forms within the LDL droplet, close to the interface with the surrounding HDL liquid, thereby following a pathway associated with a much lower free energy barrier than the direct formation of the crystalline embryo from the HDL liquid would have required. This implies that, for substances exhibiting liquid polymorphs, theories, like the classical nucleation theory, and empirical rules, like Ostwald's rule, should be modified to account for the role of liquid polymorphs in the nucleation process.