Langmuir, Vol.26, No.9, 6400-6410, 2010
Interaction Forces between Microsized Silica Particles and Weak Polyelectrolyte Brushes at Varying pH and Salt Concentration
The A FM colloidal probe technique was used to measure the interaction between microsized silica spheres and annealed polyelectrolyte brushes made of poly(acrylic acid) (PAA) and poly(2-vinyl pyridine) (P2VP) in KCl solutions or various pH values and salt concentrations. The interaction energy showed a distance dependence that was affected strongly by the swelling and the electric properties of the brushes. Between PAA brushes and silica particles, a repulsive interaction has been observed for all pH values and salt concentrations reflecting the swelling of the brush with varying pH value and the transition from osmotic to salted brush regime with increasing KCl concentration. Force measurements between P2VP brushes and silica particles revealed a much more complex behavior: a steric repulsion by the swollen brush at low pH values, a complex interplay of attractive and repulsive forces at intermediate pH values and a short-ranged attraction between the collapsed brush and the silica particle at basic values and high salt concentrations. The results are interpreted in comparison with the Alexander de Gennes model and zeta potential and ellipsometric measurements.