화학공학소재연구정보센터
Langmuir, Vol.27, No.8, 4603-4612, 2011
Numerical Study on the Deposition Rate of Hematite Particle on Polypropylene Walls: Role of Surface Roughness
In this paper, we investigate the deposition of nanosized and microsized particles on rough surfaces under electrostatic repulsive conditions in an aqueous suspension. This issue arises in the general context of modeling particle deposition which, in the present work, is addressed as a two-step process: first particles are transported by the motions of the flow toward surfaces and, second, in the immediate vicinity of the walls, the forces between the incoming particles and the walls are determined using the classical DLVO theory. The interest of this approach is to take into account both hydrodynamical and physicochemical effects within a single model. Satisfactory results have been obtained in attractive conditions but some discrepancies have been revealed in the case of repulsive conditions, in line with other studies which have noted differences between predictions based on the DLVO theory and experimental measurements for similar repulsive conditions. Consequently, the aim of the present work is to focus on this particular range and, more specifically, to assess the influence of surface roughness on the DLVO potential energy. For this purpose, we introduce a new simplified model of surface roughness where spherical protruding asperities are placed randomly on a smooth plate. On the basis of this geometrical description, approximate DLVO expressions are used and numerical calculations are performed. We first highlight the existence of a critical asperity size which brings about the highest reduction of the DLVO interaction energy. Then, the influence of the surface covered by the asperities is investigated as well as retardation effects which can play a role in the reduction of the interaction energy. Finally, by considering the random distribution of the energy barrier of the DLVO potential due to the random geometrical configurations, the overall effect of surface roughness is demonstrated with one application of the complete deposition model in an industrial test case. These new numerical results show that nonzero deposition rates are now obtained even in repulsive conditions, which confirms that surface roughness is a relevant aspect to introduce in general approaches to deposition.