화학공학소재연구정보센터
Langmuir, Vol.27, No.9, 5316-5323, 2011
Polyampholyte-Surfactant Film Tuning in Reverse Microemulsions
The pH-dependent influence of two different strongly alternating copolymers [poly(N,N'-diallyl-N,N'-dimethylammonium-alt-N-phenylmaleamic carboxylate) (PalPh) and poly(N,N'-diallyl-N,a-dimethylammonium-alt-3,5-bis(carboxyphenyl) maleamic carboxylate) (PalPhBisCarb)] based on N,N'-diallyl-N, -dimethylarnmonium chloride and maleamic acid derivatives on the phase behavior of a water-in-oil (w/o) microemulsion system made from toluene pentanol (1:1) and sodium dodecyl sulfate was investigated. It was shown that the optically dear phase range can be extended after incorporation of these copolymers, leading to an increased water solubilization capacity. Additionally, the required amount of surfactant to establish a clear w/o microemulsion depends on the pH value, which means the hydrophobicity of the copolymers. Conductivity measurements show that droplet droplet interactions in the w/o microemulsion are decreased at acidic but increased at alkaline pH in the presence of the copolymers. From differenctial scanning calorimetry measurements one can further conclude that these results are in agreement with a change of the position of the copolymer in the interfacial region of the surfactant film. The more hydrophobic PalPh can be directly incorporated into the surfactant film, whereas the phenyl groups of PalPhBisCarb flip into the water core by increasing the pH value.