Journal of Physical Chemistry A, Vol.114, No.36, 9662-9672, 2010
Comparison of Kinetic and Dynamical Models of DNA-Protein Interaction and Facilitated Diffusion
It has long been asserted that proteins such as transcription factors may locate their target in DNA sequences at rates that surpass by several orders of magnitude the three-dimensional diffusion limit thanks to facilitated diffusion, that is, the combination of one-dimensional (sliding along the DNA) and three-dimensional diffusion. This claim has been supported throughout the years by several mass action kinetic models, while the dynamical model we proposed recently (J. Chem. Phys. 2009, 130, 015103) suggests that acceleration of targeting due to facilitated diffusion cannot be large. In order to solve this apparent contradiction, we performed additional simulations to compare the results obtained with our model to those obtained with the kinetic model of Klenin et al. (Phys. Rev. Lett. 2006, 96, 018104). We show in this paper that the two models actually support each other and agree in predicting a low efficiency for facilitated diffusion. Extrapolation of these results to real systems even indicates that facilitated diffusion necessarily slows down the targeting process compared to three-dimensional diffusion.