화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.28, No.8, 1684-1687, August, 2011
Effect of CdS contents on H2 production from Pt-(CdS/TiO2) film-typed photocatalysts
E-mail:
Pt-(CdS/TiO2) film-typed photocatalysts are prepared with a doctor-blade method followed by a chemical bath deposition (CBD) process, and the films are characterized by UV-vis spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy. The film-typed structure is composed of photocatalysts and Pt metal part on a FTO substrate without additional electric device, so it is relatively simpler than the conventional photoelectrochemical cell. CdS quantum dots are introduced as a sensitizer for visible light response. Amounts of CdS quantum dots on TiO2 surface are increased with increasing CBD cycles, but they start to aggregate after certain CdS concentration due to oversaturation phenomenon. This high CdS content induces high electron losses, and therefore it reduces amounts of hydrogen production. As a result, there is a saturation point of CdS content at Cd/Ti ratio of 0.197, and the amounts of evolved hydrogen are 5.407 μmol/cm2 ·h at this photocatalyst formulation.
  1. Fujishima A, Honda K, Nature., 238, 37 (1972)
  2. Lee S, Yun CY, Hahn MS, Lee J, Yi J, Korean J. Chem. Eng., 25(4), 892 (2008)
  3. Kim IK, Ha HJ, Lee SK, Lee JK, Korean J. Chem. Eng., 22(3), 382 (2005)
  4. Domen K, Hara M, Kondo JN, Takata T, Kudo A, Kobayashi H, Inoue Y, Korean J. Chem. Eng., 18(6), 862 (2001)
  5. Lee SG, Lee HI, Korean J. Chem. Eng., 15(5), 463 (1998)
  6. Luo H, Takata T, Lee Y, Zhao J, Domen K, Yan Y, Chem. Mater., 16, 846 (2004)
  7. Bamwenda G, Tsubota S, Nakamura T, Haruta M, J. Photochem. Photobiol. A: Chem., 89, 177 (1995)
  8. Park H, Choi W, Hoffmann M, J. Mater. Chem., 18, 2379 (2008)
  9. Tada H, Mitsui T, Kiyonaga T, Akita T, Tanaka K, Nature. Mater., 5, 782 (2006)
  10. Liu H, Yuan J, Shangguan WF, Energy Fuels, 20(6), 2289 (2006)
  11. Peng TY, Ke DN, Cai P, Dai K, Ma L, Zan L, J. Power Sources, 180(1), 498 (2008)
  12. Sreethawong T, Junbua C, Chavadeja S, J. Power Sources, 190(2), 513 (2009)
  13. Bang J, Kamat P, ACS Nano., 3, 1467 (2009)
  14. Miwa T, Kaneco S, Katsumata H, Suzuki T, Ohta K, Chand Verma S, Sugihara K, Int. J. Hydrog. Energy., 35, 6554 (2010)
  15. Kitano M, Tsujimaru K, Anpo M, Appl. Catal. A: Gen., 314(2), 179 (2006)
  16. Lin S, Lee Y, Chang C, Shen Y, Yang Y, Appl. Phys. Lett., 90, 143517 (2007)
  17. Strataki N, Antoniadou M, Dracopoulos V, Lianos P, Catal. Today., 151, 53 (2010)
  18. Lee Y, Chi C, Liau S, Chem. Mater., 22, 922 (2009)
  19. Vogel R, Pohl K, Weller H, Chem. Phys. Lett., 174, 241 (1990)
  20. Baker DR, Kamat PV, Adv. Funct. Mater., 19(5), 805 (2009)