화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.28, No.7, 1518-1522, July, 2011
Direct synthesis of dimethyl carbonate from methanol and carbon dioxide over H3PW12O40/CeXZr1.XO2 catalysts: Effect of acidity of the catalysts
E-mail:
CeXZr1-XO2 catalysts were prepared by a sol-gel method, and H3PW12O40/CeXZr1-XO2 catalysts were then prepared by an impregnation method. Both catalysts were applied to the direct synthesis of dimethyl carbonate from methanol and carbon dioxide in a batch reactor. NH3-TPD experiments were carried out to investigate the effect of acidity on the catalytic performance of CeXZr1-XO2 and H3PW12O40/CeXZr1-XO2. Catalytic performance of CeXZr1-XO2 and H3PW12O40/CeXZr1-XO2 was closely related to the acidity of the catalysts. The amount of dimethyl carbonate produced over both CeXZr1-XO2 and H3PW12O40/CeXZr1-XO2 catalysts increased with increasing acidity of the catalysts. This indicates that acidity of the catalyst played a key role in determining the catalytic performance of CeXZr1-XO2 and H3PW12O40/ CeXZr1-XO2 in the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. Catalytic activity of H3PW12O40/CeXZr1-XO2 was higher than that of the corresponding CeXZr1-XO2. The enhanced catalytic performance of H3PW12O40/CeXZr1-XO2 was attributed to the Brønsted acid sites provided by H3PW12O40-.
  1. Keller N, Rebmann G, Keller V, J. Mol. Catal. A-Chem., 317(1-2), 1 (2010)
  2. Delledonne D, Rivetti F, Romano U, Appl. Catal. A: Gen., 221(1-2), 241 (2001)
  3. Babad H, Zeiler AG, Chem. Rev., 73, 75 (1973)
  4. King ST, Catal. Today, 33(1-3), 173 (1997)
  5. Matsuzaki T, Nakamura A, Catal. Surv. Jpn., 1, 77 (1997)
  6. Tomishige K, Sakaihori T, Ikeda Y, Fujimoto K, Catal. Lett., 58(4), 225 (1999)
  7. Kizlink J, Collect. Czech. Chem. Commun., 58, 1399 (1993)
  8. Sakakura T, Choi JC, Saito Y, Sako T, Polyhedron., 19, 573 (2000)
  9. Kizlink J, Pastucha I, Collect. Czech. Chem. Commun., 60, 687 (1995)
  10. Fang SN, Fujimoto K, Appl. Catal. A: Gen., 142(1), L1 (1996)
  11. Zhao TS, Han YZ, Sun YH, Fuel Process. Technol., 62(2-3), 187 (2000)
  12. Jung KT, Bell AT, J. Catal., 204(2), 339 (2001)
  13. Tomishige K, Furusawa Y, Ikeda Y, Asadullah M, Fujimoto K, Catal. Lett., 76(1-2), 71 (2001)
  14. Tomishige K, Kunimori K, Appl. Catal. A: Gen., 237(1-2), 103 (2002)
  15. Jiang CJ, Guo YH, Wang CG, Hu CW, Wu Y, Wang EB, Appl. Catal. A: Gen., 256(1-2), 203 (2003)
  16. La KW, Youn MH, Chung JS, Baeck SH, Song IK, Solid State Phenom., 119, 287 (2007)
  17. Youn MH, Park DR, Jung JC, Kim H, Barteau MA, Song IK, Korean J. Chem. Eng., 24(1), 51 (2007)
  18. Song IK, Barteau MA, Korean J. Chem. Eng., 19(4), 567 (2002)
  19. Dhage SR, Gaikwad SP, Muthukumar P, Mater. Lett., 58, 2704 (2004)
  20. Seo JG, Youn MH, Cho KM, Park S, Lee SH, Lee J, Song IK, Korean J. Chem. Eng., 25(1), 41 (2008)
  21. Rao GR, Rajkumar T, J. Colloid Interface Sci., 324(1-2), 134 (2008)
  22. Kaspar J, Fornasiero P, Balducci G, Monte RD, Hickey N, Sergo V, Inorg. Chim. Acta., 349, 217 (2003)
  23. Postole G, Chowdhury B, Karmakar B, Pinki K, Banerji J, Auroux A, J. Catal., 269(1), 110 (2010)
  24. Sulikowski B, Rachwalik R, Appl. Catal. A: Gen., 256(1-2), 173 (2003)
  25. He NY, Woo CS, Kim HG, Lee HI, Appl. Catal. A: Gen., 281(1-2), 167 (2005)
  26. Izumi Y, Hasebe R, Urabe K, J. Catal., 84, 402 (1983)
  27. Kozhevnikov IV, Kloetstra KR, Sinnema A, Zandbergen HW, Bekkum HV, J. Mol. Catal. A., 114, 287 (1996)
  28. Mallik S, Parida KM, Dash SS, J. Mol. Catal. A-Chem., 261(2), 172 (2007)
  29. Tomishige K, Ikeda Y, Sakaihori T, Fujimoto K, J. Catal., 192(2), 355 (2000)
  30. Ikeda Y, Asadullah M, Fujimoto K, Tomishige K, J. Phys. Chem. B, 105(43), 10653 (2001)
  31. Almusaiteer K, Catal. Commun., 10, 1127 (2009)