화학공학소재연구정보센터
Clean Technology, Vol.17, No.1, 41-47, March, 2011
망간 산화물 촉매상에서 일산화탄소의 산화반응 : 소성온도의 영향
CO Oxidation Over Manganese Oxide Catalysts: Effect of Calcination Temperatures
E-mail:,
초록
순수한 MnO2 산화물을 과망간산칼륨과 망간아세태이트를사용하여 침전법으로 제조하였고 소성온도를달리하여 CO 산화 반응을 수행하였다. 촉매의 물리화학적 특성을 알아보기위하여 XRD, N2 흡착,H2-TPR, CO-TPD 등의 특성분석을 수행하였다. Mn02-300 촉매는 9nm 크기 근처의 좁은 기공크기분포로 존재하며 181 m2/g의 높은 비표면적을 보였다. XRD와 H2-TPR 분석으로 Mn02 촉매는 Mn4+와 Mn3 +의 산화상태임을 확인하였다.CO-TPD 분석으로 소성온도가 높아질수록 탈착되는 CO2의 양이 감소하는 것을 확인하였다. Mn02 촉매의 소성온도에 따른 최적 활성에서는 300 ℃ 에서 소성한 촉매가 가장 좋은 활성을 나타냈으며, 200 ℃ 이하에서 100%의 CO 전환율을 보였다. 수분 존재하의 CO 산화반응은 활성점에 H20와 CO의 경쟁 흡착으로 촉매의 활성을 감소시켰으며 수분제거 시 활성이 건조 조건과 동일하게 회복되었다.
MnO2 catalysts were prepared by precipitation method using potassium manganate and manganese acetate. The effect of calcination temperatures of MnO2 catalysts for CO oxidation has been studied and their physicochemical properties werc studied by X-ray diffraction (XRD), N2 sorption, temperature programmed reduction of Hz (Hz-TPR), and temperature programmed desorption of CO (CO-TPD) techniques. MnOz calcined at 300°C catalyst has a large surface area 181 m2/g having a narrow pore size distribution at 9 nm. The results of XRD and H2-TPR showed that the catalysts calcined at different temperatures showed mixed oxidation statcs of Mn such as Mn4+ and Mn3+. CO-TPD showed that the quantity of CO2 desorbed was decreased with increasing the calcination temperatures. The catalytic activity over the catalyst calcined at 300 ℃ exhibited the highest conversion reaching to 100% at 200°C. H2O vapor showed an inhibiting effect on the efficiency of the catalyst because of co-adsorption with CO on the active sites of manganese oxide catalysts and the initial catalytic activity of CO oxidation could be regenerated by removing H2O vapor in the reactants.
  1. Xu J, Mullins DR, Overbury SH, J. Catal., 243(1), 158 (2006)
  2. Wang F, Lu GX, J. Power Sources, 181(1), 120 (2008)
  3. Xu GW, Zhang ZG, J. Power Sources, 157(1), 64 (2006)
  4. van Giezen JC, van den Berg FR, Kleinen JL, van Dillen AJ, Geus JW, Catal. Today, 47(1-4), 287 (1999)
  5. Wang F, Lu G, Inter. J. Hyd. Ener., “Hydrogen Feed Gas Purification over Bimetallic Cu.Pd Catalysts.Effects of Copper Precursors on CO oxidation," in press. (2010)
  6. Xu R, Wang X, Wang DS, Zhou KB, Li YD, J. Catal., 237(2), 426 (2006)
  7. Haruta M, Yamada N, Kobayashi T, Iijima S, J. Catal., 115, 301 (1989)
  8. Ramesh K, Chen LW, Chen FX, Liu Y, Wang Z, Han YF, Catal. Today, 131(1-4), 477 (2008)
  9. Strohmeier BR, Hercules DM, J. Phys. Chem., 88, 4922 (1984)
  10. Hasegawa Y, Fukumoto K, Ishima T, Yamamoto H, Sano M, Miyake T, Appl. Catal. B: Environ., 89(3-4), 420 (2009)
  11. Imamura S, Sawada H, Uemura K, Ishida S, J. Catal., 109, 198 (1988)
  12. Fortunato G, Oswald HR, Reller A, J. Matar.Chem., 11, 905 (2001)
  13. Morgan K, Cole KJ, Goguet A, Hardacre C, Hutchings GJ, Maguire N, Shekhtman SO, Taylor SH, J. Catal., 276(1), 38 (2010)
  14. Jones C, Cole KJ, Taylor SH, Crudace MJ, Hutchings GJ, J. Mol. Catal. A-Chem., 305(1-2), 121 (2009)
  15. Djinovic P, Batista J, Pintar A, Appl. Catal. A: Gen., 347(1), 23 (2008)
  16. PalDey S, Gedevanishvili S, Zhang W, Rasouli F, Appl. Catal. B: Environ., 56(3), 241 (2005)
  17. Xu R, Wang X, Wang DS, Zhou KB, Li YD, J. Catal., 237(2), 426 (2006)
  18. Lee HY, Manivannan V, Goodenough JB, J. Solid State Chem., 144, 220 (1999)
  19. Tang QH, Huang XN, Wu CM, Zhao PZ, Chen YT, Yang YH, J. Mol. Catal. A-Chem., 306(1-2), 48 (2009)
  20. Hu J, Chu W, Shi L, J. Nat. Gas Chem., 17, 159 (2008)
  21. Hamoudi S, Larachi F, Adnot A, Sayari A, J. Catal., 185(2), 333 (1999)
  22. Chen YZ, Liaw BJ, Huang CW, Appl. Catal. A: Gen., 302(2), 168 (2006)
  23. Lee HC, Kim DH, Catal. Today, 132(1-4), 109 (2008)
  24. Wu Z, Zhu H, Qin Z, Wang H, Ding J, Huang L, Wang J, Fuel., in press. (2010)
  25. Avgouropoulos G, Ioannides T, Appl. Catal. A: Gen., 244(1), 155 (2003)
  26. Papavasiliou J, Avgouropoulos G, Ioannides T, J. Catal., 251(1), 7 (2007)