Clean Technology, Vol.17, No.2, 97-102, June, 2011
활성탄에 의한 아마란스 염료의 흡착동력학에 관한 연구
Study on Adsorption Kinetic of Amaranth Dye on Activated Carbon
E-mail:
초록
입상활성탄에 의한 아마란스 염료의 흡착특성을 회분식 실험을 통해 조사하였다. 아마란스 염료의 흡착동력학적 연구는 298, 308, 318 K에서 초기농도 100, 200, 300 mg/L의 수용액을 가지고 수행하였다. 입상활성탄에 의한 아마란스 염료의 흡착 평형관계는 298 K에서 Langmuir 등온식이 잘 적용되었다. 유사일차반응속도식과 유사이차반응속도식을 사용하여 동력학 실험값을 평가한 결과, 유사이차반응속도식이 더 잘 맞았으며, 속도상수(k2) 값은 아마란스 초기농도 100, 200, 300 mg/L 에 대해 각각 0.1076, 0.0531 및 0.0309 g/mg.h로 조사되었다. 활성화에너지, 표준엔탈피, 표준엔트로피 및 표준자유에너지를
평가하였다. 조사된 표준자유에너지값은 초기농도 200 mg/L에서 -5.08 ~ -8.10 kJ/mol로 자발적인 공정임을 알 수 있었다. 엔탈피변화량이 양의 값인 38.89 kJ/mol을 나타내어 활성탄에 대한 아마란스 염료의 흡착이 흡열반응으로 일어난다는 것을 알 수 있었다.
The adsorption characteristics of amatanth dye by granular activated carbon were experimently investigated in the batch adsorption. Kinetic studies of adsorption of amaranth dye were carried out at 298, 308 and 318 K, using aqueous solutions with 100, 200 and 300 mg/L initial concentration of amatanth. It was established that the adsorption equilibrium of amaranth dye
on granular activated carbon was successfully fitted by Langmuir isotherm equation at 298 K. The pseudo first order and pseudo second order models were used to evaluate the kinetic data and the pseudo second order kinetic model was the best with good correlation. Values of the rate constant (k2) have been calculated as 0.1076, 0.0531, and 0.0309 g/mg h at 100, 200 and 300 mg/L
initial concentration of amatanth, respectively. Thermodynamic parameter such as activation energy, standard enthalpy, standard entropy and standard free energy were evaluated. The estimated values for standard free energy were -5.08 - -8.10 kJ/mol over activated carbon at 200 mg/L, indicated toward a spontaneous process. The positive value for enthalpy, 38.89 kJ/mol indicates that adsorption interaction of amatanth dye on activated carbon is an endothermic process.
- Korea Food & Drug Administration, “Food Additives Code,” Dongwon Publisher, 182 (2002)
- Ha SD, Park KH, Moon ES, Ko MH, Ryu K, Cho YH, Food Science and Industry., 38(4), 105 (2005)
- Mital A, Kurup L, Gupta VK, J.Harzad Mater., B117, 171 (2005)
- Fam L, Zhou Y, Yang W, Chen G, Yang F, J. Harzad Mater., B137, 1182 (2006)
- Zargar B, Parham H, Hatamie A, Chemosphere., 76, 554 (2009)
- Lee JJ, J. Korean Soc. Safety., 24(4), 34 (2009)
- Weber TW, Chakrabarti RK, Ind. Chem. Eng. Fund., 5, 212 (1996)
- Tan IAW, Ahmad AL, Hameed BH, J. Hazard. Mater., 154(1-3), 337 (2008)
- Fukukawa BH, “Activated Carbon Water Treatment Technology and Management,” Donghwa Technology, 69 (2003)
- Nollet H, Roels M, Lutgen P, Van der Meeren P, Verstraete W, Chemosphere., 53(6), 655 (2003)
- Purkait MK, DasGupta S, De S, J. Environ. Manage., 76(2), 135 (2005)
- Jain R, Sikarwar S, J. Hazard. Mater., 164(2-3), 627 (2009)
- Jaycock MJ, Parfitt GD, “Chemistry of Interfaces,” Ellis Horwood Ltd., Chichester (1981)
- Sulak MT, Demirbas E, Kobya M, Bioresour. Technol., 98(13), 2590 (2007)
- Ozcan A, Ozcan AS, J. Hazard. Mater., B125, 252 (2005)