화학공학소재연구정보센터
Polymer(Korea), Vol.35, No.4, 296-301, July, 2011
연료전지 응용을 위한 다공성막에 친수성 고분자의 함침을 통한 고내구성 이온교환막의 제조 및 특성 연구
Preparation and Characterization of the Impregnation to Porous Membranes with PVA/PSSA-MA for Fuel Cell Applications
E-mail:
초록
본 연구는 고내구성을 가진 고분자 전해질막을 제조하는 것으로 연료전지에 적용하기 위하여 poly(vinyl alcohol) 을 주사슬부로 하여 poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA)를 다공성 polyethylene(PE) 막에 함침시켜 막을 제조하였다. 제조된 막을 함수율, 접촉각, FTIR, 이온교환용량, 이온전도도, 메탄올 투과도, 열 중량분석, 탄성계수 등의 측정을 통해 친수성 고분자가 함침된 막의 특성평가를 실시하였다. 접촉각 측정과 FTIR 분석을 통해 PE 막에 함침된 막에서의 친수성기의 존재를 확인하였다. PSSA-MA의 함량이 10 wt% 함침된 막의 경우, 이온교환 용량은 Nafion 115의 0.91보다 향상된 1.2 meq./g dry membrane을 얻었다. 또한, 탄성계수의 경우 PE 막에 비하여 3∼3.6배 높은 강도를 나타내었으며, 함수율과 메탄올 투과 실험을 통해 PSSA-MA의 함량이 늘어남에 따라 높은 치수안정성과 낮은 메탄올 투과결과를 확인하였다.
This study focuses on the investigation of the impregnation of poly(vinyl alcohol)(PVA) crosslinked with poly(styrene sulfonic acid-co-maleic acid)(PSSA-MA) to porous polyethylene membrane for the fuel cell application. The membranes were characterized by the measurements of the water content, contact angle, FTIR spectra, thermal gravimetric analysis, ion exchange capacity, proton conductivity, methanol permeability and elastic modulus. The existence of hydrophilic moieties in the impregnated membranes was confirmed by contact angle and FTIR measurements. The impregnated PVA/PSSAMA(90:10) membrane exhibited a higher ion exchange capacity (1.2 meq./g dry membrane) than Nafion membrane (0.91 meq./g dry membrane). Through the elastic modulus measurement, the dimensional stability of the resulting membranes was expected to increase higher than the polyethylene membranes. The methanol crossover and water content decreased even if the PSSA- MA content increased due to the reduction of the free volume.
  1. Carrette L, Friedrich KA, Stimming U, Fuel cellsfundamentals and application., Fuel Cell, Germany, 1, 5 (2001)
  2. Lamy C, Leger JM, Srinivasan S, in Modern Aspects of Electrochemistry, Bockris J. O’M, Conway BE, Editors, Plenum Press, New York, 34, 53 (2000)
  3. Wang JT, Wasmus S, Savinell RF, J. Electrochem. Soc., 142(12), 4218 (1995)
  4. Ren XM, Zelenay P, Thomas S, Davey J, Gottesfeld S, J. Power Sources, 86(1-2), 111 (2000)
  5. Hogarth MP, Hard GA, Platinum Met. Rev., 40, 150 (1996)
  6. Lee K, Nam JD, J. Power Sources, 157(1), 201 (2006)
  7. Panero S, Fiorenza P, Navarra MA, Owska JR, Scrosati B, J. Electrochem. Soc., 152, 2400 (2005)
  8. Furukawa K, Okajima K, Sudoh M, J. Power Sources, 139(1-2), 9 (2005)
  9. Choi JH, Kini YM, Lee JS, Cho KY, Jung HY, Park JK, Park IS, Sung YE, Solid State Ion., 176(39-40), 3031 (2005)
  10. Deluca NW, Elabd YA, J. Polym. Sci. B: Polym. Phys., 44(16), 2201 (2006)
  11. Scott K, Taama WM, Argyropoulos P, J. Membr. Sci., 171(1), 119 (2000)
  12. Park HB, Lee CH, Sohn JY, Lee YM, Freeman BD, Kim HJ, J. Membr. Sci., 285(1-2), 432 (2006)
  13. Kim DS, Guiver MD, Nam SY, Il Yun T, Seo MY, Kim SJ, Hwang HS, Rhim JW, J. Membr. Sci., 281(1-2), 156 (2006)
  14. Cheon SW, Jun JH, Rhim JW, Membrane Journal., 13, 191 (2003)
  15. Winston Ho WS, Sirkar KK, Membrane Handbook., Van Nostrand Reinhold, New York, 236 (1992)
  16. Kesting RE, Synthetic Polymeric Membranes., John Wiley & Sons, New York, 348 (1985)
  17. Kim DS, Park HB, Rhim JW, Lee YM, J. Membr. Sci., 240(1-2), 37 (2004)
  18. Kim DS, Park HB, Rhim JW, Lee YM, Solid State Ion., 176(1-2), 117 (2005)