화학공학소재연구정보센터
Materials Chemistry and Physics, Vol.122, No.1, 284-289, 2010
The optical properties of nanoporous structured titanium dioxide and the photovoltaic efficiency on DSSC
This study examined the characterization of nanoporous structured titanium dioxide and its application to dye-sensitized solar cells (DSSCs). TEM revealed nanopore sizes of 10.0 nm with a regular hexagonal form. When nanoporous structured TiO2 was applied to DSSC, the energy conversion efficiency was enhanced considerably compared with that using nanometer sized TiO2 prepared using a hydrothermal method. The energy conversion efficiency of the DSSC prepared from nanoporous structured TiO2 was approximately 8.71% with the N719 dye under 100 mW cm(-2) simulated light. FT-IR spectroscopy showed that the dye molecules were attached perfectly to the surface and more dye molecules were absorbed on the nanoporous structured TiO2 than on the nano-sized TiO2 particles prepared using a conventional hydrothermal method. Electrostatic force microscopy (EFM) showed that the electrons were transferred rapidly to the surface of the nanoporous structured TiO2 film. (C) 2010 Elsevier B.V. All rights reserved.