Polymer, Vol.52, No.11, 2414-2421, 2011
Novel interfacially-polymerized polyamide thin-film composite membranes: Studies on characterization, pervaporation, and positron annihilation spectroscopy
To improve the pervaporation performance of thin-film composite membranes, novel thin-film composite membranes were prepared via interfacial polymerization by reacting 5-nitrobenzene-1,3-dioyl dichloride (NTAC) or 5-tert-butylbenzene-1,3-dioyl dichloride (TBAC) with triethylenetetraamine (TETA) on the surface of a modified polyacrylonitrile (mPAN) membrane (TETA-NTAC/mPAN and TETA-TBAC/mPAN). The effect of the acyl chloride monomers chemical structure on the pervaporation separation of an aqueous ethanol solution was investigated. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and water contact angle measurements were applied to analyze the chemical structure, surface chemical composition, surface roughness and hydrophilicity of the polyamide active layer of the composite membrane. To correlate the variations in the free volume of the polyamide active layers with the pervaporation performance, positron annihilation spectroscopy (PAS) experiments were performed with a variable monoenergetic slow positron beam. From the results of the PAS and XPS experiments, the S parameter, o-Ps annihilation lifetime tau(3) (corresponding to free volume size) and its intensity tau(3) (corresponding to free volume concentration), the tau(3) and tau(3) of TETA-NTAC polyamide layer (positron incident energy of 1-1.7 key) were both higher than those of TETA-TBAC polyamide layer. The S parameter for TETA-NTAC polyamide layer was also higher than that of the TETA-TBAC polyamide layer even though the former was more crosslinking than that of the latter. In the aqueous ethanol solution dehydration experiments, the TETA-NTAC/mPAN membrane produced both a higher permeation rate and water concentration in the permeate than the TETA-TBAC/mPAN membrane. (C) 2011 Elsevier Ltd. All rights reserved.