Transport in Porous Media, Vol.52, No.3, 371-387, 2003
Heat transfer and gas flow through feed stream within horizontal pipe
In the feeding process, the feed stream forms a moving packed bed of particle from the feedstock in the feed channel. When the feeding is at emergency interruption especially in the case of flooding and uncontrollable discharge, the hot gases from reactor would infiltrate into the feed stream. The high heat penetration into feed stream would affect the feeder performance. In this paper, transient thermal response of feed stream within horizontal pipe is described mathematically with a gas flow and heat transfer model. Influences of varied factors on the thermal penetration into feed stream are examined for different conditions. The temperature of the packed-bed particles and the gas velocity distribution curves are obtained for the feeding service at interruption and at normal operating conditions. The numerical results show that the thermal penetration to the packed-bed particles by the seepage flow fluid is high only in the position near the gas entrance. The thermal penetration depth tends to increase with the seepage flow velocity and decrease with feeding rate. There is no appreciable thermal penetration in the feed stream when the feeding service is at normal running. The operating conditions and the porosity of solid bed have importance effects on the gas velocity and temperature field in the thermal penetration zone. A test system is set up to determine the transient thermal response experimentally for the packed bed of particles within a horizontal pipe. The model results are found to compare favorably with the experimental data.