화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.17, No.3, 367-376, May, 2011
Continuous production of carbon nanotubes - A review
E-mail:
Carbon nanotubes (CNTs) up to now are the most researched materials of the 21st century with an international intention of growing industrial quantities due to their superior properties for use in many applications. Thus far large quantities of carbon nanotube scan be grown in a continuous manner by both arc as well as chemical vapour deposition methods. In this paper, an innovative approach of feeding gases, a carbon precursor (solid or gases) and a catalyst into the reaction zone is reviewed. This is followed by a study of the reaction process concerning how the method is initiated, the effect of growth environment and catalyst on CNTs as well as the dischargingmechanism for the final carbon products. A study of the arc method consists of a novel way of growing CNTs in a liquid solution from an arc discharge generated by carbon rods, by growing CNTs in a plasma zone using carbon gases or solid carbon and a more direct method of using carbon tape as the anode for the synthesized source are also reported. In the case of the chemical vapour deposition (CVD) method, some use a horizontal reactor and some use a vertical reactor with all having different installed devices for use in continuous feeding and discharging of resources and products respectively. Additionally, problems regarding the CNT yield and some issues that have not been taken into consideration by others, are discussed. At the end of the review, an additional mechanism to integrate catalyst preparation and carbon nanotube purification into the current research synthesizing process for future study is proposed for a highly productive continuous CNT synthesis process.
  1. Andrews R, Jacques D, Rao A, Derbyshire F, Qian D, Fan X, et al., Chemical Physics Letters., 303, 467 (1999)
  2. Arena U, Mastellone M, Camino G, E. Boccaleri E, Polymer Degradation and Stability., 91(4), 763 (2006)
  3. Biro LP, Horvath ZE, Szalmas L, Kertesz K, Weber F, Juhasz G, Radnoczi G, Gyulai J, Chem. Phys. Lett., 372(3-4), 399 (2003)
  4. Bystrzejewski M, Huczko A, Lange H, Płotczyk W, Stankiewicz R, Pichler T,et al., Applied Physics A., 91(2), 223 (2008)
  5. Choi SI, Nam JS, Kim JI, Hwang TH, Seo JH, Hong SH, Thin Solid Films, 506, 244 (2006)
  6. Colomer J, Bister J, Willems I, Konya Z, Fonseca A, VanTendeloo G, Chemical Communications., 14, 1343 (1999)
  7. Dupuis A, Progress in Materials Science., 50(8), 929 (2005)
  8. Fabry F, Gruenberger T, Gonzalez-Aguilar J, Okuno H, Grivei E, Probst N, et al., In NSTI Nanotechnology Conference and Trade Show., 3, 228 (2004)
  9. Fischer J, in: Gogotsi Y (Ed.), Carbon Nanotubes: Structure and Properties, CRC Press, Boca Raton (2006)
  10. Gulino G, Vieira R, Amadou J, Nguyen P, Ledoux MJ, Galvagno S, Centi G, Cuong PH, Appl. Catal. A: Gen., 279(1-2), 89 (2005)
  11. Guo A, Beddow J, Vetter A, Powder Technology., 43(3), 279 (1985)
  12. Hahn J, Han J, Yoo J, Jung H, Suh J, Carbon., 42(4), 877 (2004)
  13. Hausner H, Powder Technology., 30(1), 3 (1981)
  14. Hernadi K, Chem. Phys. Lett., 363(1-2), 169 (2002)
  15. Iijima S, Nature., 354, 56 (1991)
  16. Ishigami M, Cumings J, Zettl A, Chen S, Chem. Phys. Lett., 319(5-6), 457 (2000)
  17. Kalman H, Tardos G, Particulate Science and Technology., 23(1), 1 (2005)
  18. Keidar M, Journal of Physics D: Applied Physics., 40(8), 2388 (2007)
  19. Kobayashi Y, Nakashima H, Takagi D, Homma Y, Thin Solid Films., 464, 286 (2004)
  20. Kusaba M, Tsunawaki Y, Thin Solid Films, 506, 255 (2006)
  21. Lange H, Sioda M, Huczko A, Zhu Y, Kroto H, Walton D, Carbon., 41(8), 1617 (2003)
  22. Liu B, Qu M, Yu Z, Chinese Chemical Letters., 12(12), 1135 (2001)
  23. Maghsoodi S, Khodadadi A, Mortazavi Y, Applied Surface Science., A novel continuous process for synthesis of carbon nanotubes using iron floating catalyst and MgO particles for CVD of methane in a fluidized bed reactor (2009)
  24. Mauron P, Emmenegger C, Sudan P, Wenger P, et al., Diamond and Related Materials., 12(3-7), 780 (2003)
  25. Merrow EW, Chemical Engineering Progress., 81(5), 14 (1985)
  26. Mora E, Tokune T, Harutyunyan A, Carbon., 45(5), 971 (2007)
  27. Ohishi T, Yoshihara Y, Fukumasa O, Surface & Coatings Technology., 202(22-23), 5329 (2008)
  28. Philippe R, Morancais A, Corrias M, Caussat B, et al., Chemical Vapor Deposition., 13(9), 447 (2007)
  29. See CH, Harris AT, Ind. Eng. Chem. Res., 46(4), 997 (2007)
  30. See CH, Harris AT, Chem. Eng. J., 144(2), 267 (2008)
  31. Setoguchi T, Nozaki M, Hashimoto H, Fujii T, Development of Fabrication Technology of Carbon Nanotube by Fluidized-Bed Reactor, 43, Mitsubishi Heavy Industries, Ltd., 1-3 (2006)
  32. So D, Ham H, Kim W, Bang S, Choi B, Shim K, et al., Ceramic Processing Research., 10(1), 105 (2009)
  33. Son SY, Lee Y, Won S, Lee DH, Kim SD, Sung SW, Ind. Eng. Chem. Res., 47(7), 2166 (2008)
  34. Su LF, Wang JN, Yu F, Sheng ZM, Chang H, Pak CH, Chem. Phys. Lett., 420(4-6), 421 (2006)
  35. Vittori A, Marazzi R, Krsmanovic R, Carbon., 41(12), 2393 (2003)
  36. Yusoff HM, Shastry R, Querrioux T, Abrahamson J, Curr. Appl. Phys., 6(3), 422 (2006)
  37. Yusoff M, Page N, Powder Technology., 76(2), 155 (1993)
  38. Lyu SC, Liu BC, Lee SH, Park CY, Kang HK, Yang CW, Lee CJ, J. Phys. Chem. B, 108(5), 1613 (2004)
  39. Cassel A, McCool G, Tee N, Koehne J, Chen B, Li J, et al., Applied Physics Letters., 82, 817 (2003)
  40. Dai H, Rinzler A, Nikolaev P, Thess A, Colbert D, Smalley R, Chemical Physics Letters., 260, 471 (1996)
  41. Baek Y, Honda S, Ikuno T, Ohkura S, Katayama M, Hirao T, et al., Japanese Journal of Applied Physics., 42, 579 (2003)
  42. Yang Y, Hu Z, Tian Y, Lu Y, Wang X, Chen Y, Nanotechnology., 14, 733 (2003)
  43. Chen P, Zhang H, Lin G, Hong Q, Tsai K, Carbon., 35, 1495 (1997)
  44. Kukovecz A, Konya Z, Nagaraju N, Willems I, Tamasi A, Fonseca A, et al., Physical Chemistry Chemical Physics., 2(3), 3071 (2000)
  45. Yu ZX, Chen D, Totdal B, Holmen A, Catal. Today, 100(3-4), 261 (2005)
  46. Danafar F, Fakhru'l-Razi A, Salleh MAM, Biak DRA, Chem. Eng. J., 155(1-2), 37 (2009)
  47. Fulcheri L, et al., Production of Carbon Nanostructures Ranging from Carbon Black Over Fullerenes to Nanotubes by Thermal Plasma, 16th International Symposium on Plasma Chemistry (ISPC 16), Taormina (Italy) (2003)