화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.49, No.4, 405-410, August, 2011
화학기상 증착법을 이용하여 제조된 텅스텐 산화막의 전기변색 소자 응용 연구
Preparation of WO3 Films by CVD and their Application in Electrochromic Devices
E-mail:
초록
본 연구에서는 화학 증착법을 이용하여 텅스텐 산화물을 제조한 후 기판 온도에 따른 성막 특성을 분석하고, 성막된 텅스텐 산화물을 전기 변색 소자 제조에 응용하여 소자 특성을 살펴보았다. 증착 온도 300 ℃ 이상에서 최대 성막 속도(8 μm/min)를 얻을 수 있었으며, 275 ℃ 이하에서는 표면 반응 율속 특성을 보였고 이때 겉보기 활성화 에너지 값은 45.9 kJ/mol이였다. 성막 된 텅스텐 산화물은 275 ℃ 이하에서는 비정질막이, 그 이상 온도에서는 결정질 막이 형성되었다. 전기 변색 소자 적용시 유리한 비정질막이 성막되는 조건에서 증착 온도 및 두께 변화에 따른 전기 변색 특 성을 평가하였다. 증착 온도가 동일한 경우 두께가 두꺼울수록 그리고 두께가 일정한 경우는 증착 온도가 낮을수록 변색 효율 측면에서 유리한 결과를 얻었다.
A study on chemical vapor deposition(CVD) of WO3 and the electrochromic properties of the CVD WO3 films have been carried out. The crystalinity, purity, and growth rate of the films depending on substrate temperatures are investigated. The highest growth rate is 8μm/min at the substrate temperatures above 300 ℃ and the estimated activation energy for overall film growth is about 45.9 kJ/mol at the temperatures of 225~275 ℃, where the CVD process is controlled by a surface reaction kinetics. The films grown below 275 ℃ are amorphous, while those deposited above 300 ℃ are crystalline. The effects of thickness and deposition temperature of the WO3 films on electrochromic activity are also investigated. The coloration efficiency of the films increases with increase in film thickness and decrease in deposition temperature.
  1. Azens A, Vaivars G, Veszelei M, Kullman L, Granqvist CG, J. Appl. Phys., 89, 7885 (2001)
  2. Azens A, Granqvist CG, Kullman L, “Color-modifying Treatment of Thin Films,” PCT Int. Appl. WO 2001027219 A1 20010419 (2001)
  3. Niklasson GA, Granqvist CG, J. Mater. Chem., 17, 127 (2007)
  4. Lampert CM, Granqvist CG, Large-area Chromogenics: Materials and Devices for Transmittance Control, SPIE Opt. Engr. Press, Bellingham (1990)
  5. Granqvist C, Handbook of Inorganic Electrochromic Materials, Elsevier, Amsterdam (1995)
  6. Gellings PJ, Bouwmeeter HJM, in Granqvist CG (Ed.), The CRC Handbook of Solid State Electrochemistry, CRC Press, Boca Raton, 587 (1997)
  7. Passerini S, Scrosati B, Gorenstein A, Andersson AM, Granqvist CG, J. Electrochem. Soc., 136, 3394 (1989)
  8. Passerini S, Scrosati B, Gorenstein A, J. Electrochem. Soc., 137, 3297 (1990)
  9. Passerini S, Scrosati B, J. Electrochem. Soc., 141(4), 889 (1994)
  10. Porqueras I, Bertran E, Thin Solid Films., 398, 41 (2001)
  11. Velevska J, Ristova M, Solar Energy Mat.& Solar Cells., 73, 131 (2002)
  12. Rougier A, Blyr A, Electrochim. Acta, 46(13-14), 1945 (2001)
  13. Kirss, Rein U, Meda L, Applied Organometal. Chem., 12, 155 (1998)
  14. Park JY, Ahn KS, Nah YC, Shim HS, Sung YE, J. Sol-Gel Sci. Technol., 31, 323 (2004)
  15. Chung SJ, Choi YS, Cho SM, HWAHAK KONGHAK, 36(2), 132 (1998)
  16. Choi Y, Cho WI, Cho BW, Yun KS, HWAHAK KONGHAK, 30(1), 55 (1992)
  17. Ashrit PV, Thin Solid Films, 385(1-2), 81 (2001)
  18. Wang H, Zhang M, Yang S, Zhao L, Ding L, Solar Energy Mat. & Solar Cells., 43, 345 (1996)
  19. Antonaia A, Polichetti T, Addonizio ML, Aprea S, Minarini C, Rubino A, Thin Solid Films, 354(1-2), 73 (1999)
  20. Bernard MC, Hugot-Le Goff A, Zeng W, Electrochim. Acta, 44(5), 781 (1998)